The long-term application of chemical fertilizers has caused to the farmland soil compaction, water pollution, and reduced the quality of vegetable to some extent. So, its become a trend in agriculture to find new bio-fertilizers. Chlorella extract is rich in amino acids, peptides, nucleic acids, growth hormones, potassium, calcium, magnesium, iron, zinc ions, vitamin E, B1, B2, C, B6, folic acid, free biotin and chlorophyll. Chlorella extract can promote biological growth, mainly by stimulating the speed of cell division, thereby accelerating the proliferation rate of cells and playing a role in promoting plant growth. Whether Chlorella extract can be used to improve the growth of pepper (Capsicum annuum), needs to be verified. In current study, a pepper variety 'Chao Tian Jiao' was used as experiment material, by determining the changes of the related characteristics after spraying the seedlings with Chlorella extract, and its effect on growth of Capsicum annuum plants was investigated. The results showed that the Chlorella extract significantly increased plant height of pepper seedlings (treatment: 32.2 ± 0.3 cm; control: 24.2 ± 0.2 cm), stem diameter (treatment: 0.57 ± 0.02 cm; control: 0.41 ± 0.03 cm) and leaf area (treatment: 189.6 ± 3.2 cm; control: 145.8 ± 2.5 cm). Particularly, the pepper seedlings treated with Chlorella extract, developed the root system in better way, significantly increased the chlorophyll a, and the activities of SOD, POD and CAT enzymes were also improved significantly. Based on our results, we can speculate that it is possible to improve the growth of Capsicum annuum seedlings and reduce the application of chemical fertilizers in pepper production by using Chlorella extract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474868 | PMC |
http://dx.doi.org/10.1038/s41598-022-19846-6 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Biorefinery and Bioenergy Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
Wastewater and livestock waste can be used as a cheap source of nutrients for microalgae growth. In this work, a cocktail waste medium (CWM) was developed using 75% Chhalera municipal wastewater (C-MWW), 25% Parag dairy wastewater (P-DWW), and 15 g L of poultry litter extract (PLE-15) for low-cost cultivation of Chlorella sp. BRE4.
View Article and Find Full Text PDFFood Res Int
January 2025
Chemistry of Natural Compounds Department, National Research Centre, 33 El-Behouth St, Dokki-Giza 12622, Egypt. Electronic address:
The aim of this study is to evaluate the effect of some microalgae species adding with different forms on minced beef meat shelf life during cryogenic storage for 13 days. Chlorella vulgaris and Arthrospira platensis are chosen because of their safety and high nutritional value. Microalgae nanoparticles with their different forms have been prepared by using emulsification solvent evaporation method.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, 2-9, Tongyeonghaean-ro, Tongyeong-si, 53064, Gyeongsangnam-do, Republic of Korea.
Ulva intestinalis (UI) is widely available edible seaweed and has potential to be introduced as functional food items in Bangladesh. However, potential health hazards of this seaweed with biotoxicity assays and its relation to heavy metal contents were not evaluated previously. With these objectives, toxic effects of UI collected from floating raft culture in Monkhali Beach was evaluated using various organisms such as Chlorella vulgaris, Artemia salina, Daphnia magna, and Lactuca sativa.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
Co-metabolism with appropriate carbon sources has been demonstrated to effectively enhance the removal of ubiquitous recalcitrant micropollutant by microalgae. However, the specific impacts of carbon sources on the co-metabolism of antibiotics by microalgae remain insufficiently explored. In this study, transcriptomics, gene network analysis, extracellular polymeric substances (EPS), and enzymatic activity involved in co-metabolic pathways of norfloxacin (NFX), were systematically evaluated to investigate the underlying biological mechanisms involved in NFX co-metabolism by Chlorella pyrenoidosa.
View Article and Find Full Text PDFMar Drugs
December 2024
Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.
The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!