Cities with different background climates experience different thermal environments. Many studies have investigated land cover effects on surface urban heat in individual cities. However, a quantitative understanding of how background climates modify the thermal impact of urban land covers remains elusive. Here, we characterise land cover and their impacts on land surface temperature (LST) for 54 highly populated cities using Landsat-8 imagery. Results show that urban surface characteristics and their thermal response are distinctly different across various climate regimes, with the largest difference for cities in arid climates. Cold cities show the largest seasonal variability, with the least seasonality in tropical and arid cities. In tropical, temperate, and cold climates, normalised difference built-up index (NDBI) is the strongest contributor to LST variability during warm months followed by normalised difference vegetation index (NDVI), while normalised difference bareness index (NDBaI) is the most important factor in arid climates. These findings provide a climate-sensitive basis for future land cover planning oriented at mitigating local surface warming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474840PMC
http://dx.doi.org/10.1038/s41598-022-19431-xDOI Listing

Publication Analysis

Top Keywords

land cover
16
normalised difference
12
urban surface
8
surface temperature
8
background climates
8
arid climates
8
land
6
cities
6
surface
5
climates
5

Similar Publications

The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.

View Article and Find Full Text PDF

Human activities such as agriculture and urban development are linked to water quality degradation. Canada represents a large and heterogeneous landscape of freshwater lakes, where variations in climate, geography and geology interact with land cover alteration to influence water quality differently across regions. In this study, we investigated the influence of water quality and land use on bacterial communities across 12 ecozones.

View Article and Find Full Text PDF

Forest edges, where humans, mosquitoes, and wildlife interact, may serve as a nexus for zoonotic arbovirus exchange. Although often treated as uniform interfaces, the landscape context of edge habitats can greatly impact ecological interactions. Here, we investigated how the landscape context of forest edges shapes mosquito community structure in an Amazon rainforest reserve near the city of Manaus, Brazil, using hand-nets to sample mosquitoes at three distinct forest edge types.

View Article and Find Full Text PDF

The generation of spectral libraries using hyperspectral data allows for the capture of detailed spectral signatures, uncovering subtle variations in plant physiology, biochemistry, and growth stages, marking a significant advancement over traditional land cover classification methods. These spectral libraries enable improved forest classification accuracy and more precise differentiation of plant species and plant functional types (PFTs), thereby establishing hyperspectral sensing as a critical tool for PFT classification. This study aims to advance the classification and monitoring of PFTs in Shoolpaneshwar wildlife sanctuary, Gujarat, India using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) and machine learning techniques.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!