Background: Infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a severe disease, termed coronavirus disease 2019 (COVID-19), with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms and their modulation has shown a mortality benefit.

Methods: In a cohort of 56 critically ill COVID-19 patients, peripheral blood transcriptomes were obtained at admission to an intensive care unit (ICU) and clustered using an unsupervised algorithm. Differences in gene expression, circulating microRNAs (c-miRNAs) and clinical data between clusters were assessed, and circulating cell populations estimated from sequencing data. A transcriptomic signature was defined and applied to an external cohort to validate the findings.

Results: We identified two transcriptomic clusters characterised by expression of either interferon-related or immune checkpoint genes, respectively. Steroids have cluster-specific effects, decreasing lymphocyte activation in the former but promoting B-cell activation in the latter. These profiles have different ICU outcomes, despite no major clinical differences at ICU admission. A transcriptomic signature was used to identify these clusters in two external validation cohorts (with 50 and 60 patients), yielding similar results.

Conclusions: These results reveal different underlying pathogenetic mechanisms and illustrate the potential of transcriptomics to identify patient endotypes in severe COVID-19 with the aim to ultimately personalise their therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478362PMC
http://dx.doi.org/10.1183/13993003.00592-2022DOI Listing

Publication Analysis

Top Keywords

critically ill
8
ill covid-19
8
covid-19 patients
8
pathogenetic mechanisms
8
transcriptomic signature
8
transcriptomic
4
transcriptomic clustering
4
clustering critically
4
covid-19
4
patients background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!