The Golgi is the central sorting station in the secretory pathway and thus the destination of transport vesicles arriving from the endoplasmic reticulum and endosomes and from within the Golgi itself. Cell viability, therefore, requires that the Golgi accurately receives multiple classes of vesicle. One set of proteins proposed to direct vesicle arrival at the Golgi are the golgins, long coiled-coil proteins localized to specific parts of the Golgi stack. In mammalian cells, three of the golgins, TMF, golgin-84, and GMAP-210, can capture intra-Golgi transport vesicles when placed in an ectopic location. However, the individual golgins are not required for cell viability, and mouse knockout mutants only have defects in specific tissues. To further illuminate this system, we examine the Drosophila orthologs of these three intra-Golgi golgins. We show that ectopic forms can capture intra-Golgi transport vesicles, but strikingly, the cargo present in the vesicles captured by each golgin varies between tissues. Loss-of-function mutants show that the golgins are individually dispensable, although the loss of TMF recapitulates the male fertility defects observed in mice. However, the deletion of multiple golgins results in defects in glycosylation and loss of viability. Examining the vesicles captured by a particular golgin when another golgin is missing reveals that the vesicle content in one tissue changes to resemble that of a different tissue. This reveals a plasticity in Golgi organization between tissues, providing an explanation for why the Golgi is sufficiently robust to tolerate the loss of many of the individual components of its membrane traffic machinery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849145 | PMC |
http://dx.doi.org/10.1016/j.cub.2022.08.054 | DOI Listing |
J Sci Food Agric
January 2025
School of Life Sciences, Anhui University, Hefei, China.
Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles.
View Article and Find Full Text PDFPharmacol Res Perspect
February 2025
New Drug Development Center, Daegu, Korea.
Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
Many membrane proteins on the cell surface are constantly internalized from, and re-delivered to, the plasma membrane. This endocytic cycling, which relies on accurate SNARE-mediated fusion of vesicles containing cargo proteins, is highly important for the function of many proteins such as signaling receptors. While the SNARE proteins that mediate fusion during specific events, such as neurotransmitter and hormone release, in mammalian cells has been heavily studied, the SNARE proteins that mediate surface delivery of specific cargo such as the receptors for these released factors are still not known.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.
The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!