In vivo bioluminescence imaging of granzyme B activity in tumor response to cancer immunotherapy.

Cell Chem Biol

Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA. Electronic address:

Published: October 2022

Cancer immunotherapy has revolutionized the treatment of cancer, but only a small subset of patients benefits from this new treatment regime. Imaging tools are useful for early detection of tumor response to immunotherapy and probing the dynamic and complex immune system. Here, we report a bioluminescence probe (GBLI-2) for non-invasive, real-time, longitudinal imaging of granzyme B activity in tumors receiving immune checkpoint inhibitors. GBLI-2 is made of the mouse granzyme B tetrapeptide IEFD substrate conjugated to D-luciferin through a self-immolative group. GBLI-2 was evaluated for imaging the dynamics of the granzyme B activity and predicting therapeutic efficacy in a syngeneic mouse model of CT26 murine colorectal carcinoma. The GBLI-2 signal correlated with the change in the population of PD-1- and granzyme B-expressing CD8 T cells in tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588750PMC
http://dx.doi.org/10.1016/j.chembiol.2022.08.006DOI Listing

Publication Analysis

Top Keywords

granzyme activity
12
imaging granzyme
8
tumor response
8
cancer immunotherapy
8
granzyme
5
in vivo bioluminescence
4
imaging
4
bioluminescence imaging
4
activity tumor
4
response cancer
4

Similar Publications

: Developing ex vivo models that replicate immune-tumor interactions with high fidelity is essential for advancing immunotherapy research, as traditional two-dimensional in vitro systems often lack the complexity required to fully represent these interactions. : In this study, we establish a comprehensive 3D redirect lysis (3D-RDL) assay using colorectal cancer spheroids and adult stem cell-derived, healthy human organoids to evaluate the efficacy and safety profile of , a bispecific antibody targeting carcinoembryonic antigens (CEAs) on cancer cells and CD3 on T cells. This model allows us to assess cytotoxic activity and immune responses, capturing variations in therapeutic response not observable in simpler systems.

View Article and Find Full Text PDF

Multiple Myeloma Cells Shift the Fate of Cytolytic ILC2s Towards TIGIT-Mediated Cell Death.

Cancers (Basel)

January 2025

Laboratory of Immunology and Biotherapy, Department Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.

Background: Growing evidence attests to the multifaceted roles of group 2 innate lymphoid cells (ILC2s) in cancer immunity. They exhibit either pro- or anticancer activity depending on tumor type but their function in Multiple Myeloma (MM) is still not elucidated.

Methods: The bone marrow (BM) and peripheral blood (PB) of patients (pts) with MM or precancerous conditions were collected, and specific properties of ILC2 subsets were assessed by flow cytometry.

View Article and Find Full Text PDF

Rejection monitoring in facial vascularized composite allotransplantation (fVCA) traditionally focuses on skin biopsies. However, mucosal rejection frequently presents with more pronounced signs of immune activity. To explore mechanistic differences between skin and mucosal rejection, rejection and non-rejection biopsies from allograft skin and oral mucosa of nine fVCA recipients were retrospectively analyzed using histology, multiplex immunostaining, and gene expression profiling, with peripheral blood mononuclear cells (PBMCs) quantified via mass cytometry (CyTOF).

View Article and Find Full Text PDF

Bacterial infections, particularly those caused by drug-resistant bacteria, represent a pressing global health challenge. During the interaction between pathogen infection and host defense, bacterial infections initiate the host's immune response, which involves the activation of proteases that play a critical role in antibacterial defense. Granzyme B (GzmB), a key immune-related biomarker associated with cytotoxic T lymphocytes (CTLs), plays a pivotal role in this process.

View Article and Find Full Text PDF

We have developed a 37-color spectral flow cytometry panel to assess the phenotypical differentiation of innate and adaptive immune lymphoid subsets within human intestinal tissue. In addition to lineage markers for identifying innate lymphoid cells (ILC), TCRγδ, MAIT (mucosal-associated invariant T), natural killer (NK), CD4 and CD8 T cells, we incorporated markers of differentiation and activation (CD45RA, CD45RO, CD25, CD27, CD38, CD39, CD69, CD103, CD127, CD161, HLA-DR, CTLA-4 [CD152]), alongside transcription factors (Bcl-6, FoxP3, GATA-3, Helios, T-bet, PU.1 and RORγt) and chemokine receptors (CCR4, CCR6, CCR7, CXCR3, and CXCR5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!