Spin-selective thermoelectric transport along a vibrating-helical protein molecule.

J Phys Condens Matter

Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.

Published: October 2022

Motivated by the development of bio-thermoelectricity and spin caloritronics, we studied the nonlinear spin-selective transport along a vibrating-helical protein molecule in the presence of thermal bias by using the standard nonequilibrium Green's function formalism. Our results demonstrate that the thermal bias induces the oscillation of spin-polarization between positive and negative values accompanied by spin current with increasing the chain length. Moreover, even for the very short preparable peptide chains, external electron-phonon interaction can give rise to the spin-selectivity, whereas characteristic electron-phonon interaction can not, but in conjunction with thermal bias, it has an important impact on the total current's direction and the spin-polarized current intensity. Finally, the spin-polarization induced by thermal bias can be modulated by gate-bias much more easily as compared to that induced by electric bias. We conclude that by applying thermal bias and gate-bias,-helical protein molecules are conducive to the storage of binary digits.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac920cDOI Listing

Publication Analysis

Top Keywords

thermal bias
20
transport vibrating-helical
8
vibrating-helical protein
8
protein molecule
8
electron-phonon interaction
8
bias
6
thermal
5
spin-selective thermoelectric
4
thermoelectric transport
4
molecule motivated
4

Similar Publications

Silicon carbide (SiC) metal oxide semiconductor field-effect transistors (MOSFETs) are a future trend in traction inverters in electric vehicles (EVs), and their thermal safety is crucial. Temperature-sensitive electrical parameters' (TSEPs) indirect detection normally requires additional circuits, which can interfere with the system and increase costs, thereby limiting applications. Therefore, there is still a lack of cost-effective and sensorless thermal monitoring techniques.

View Article and Find Full Text PDF

High-Temperature Optoelectronic Transport Behavior of n-TiO Nanoball-Stick/p-Lightly Boron-Doped Diamond Heterojunction.

Materials (Basel)

January 2025

Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China.

The n-TiO nanoballs-sticks (TiO NBSs) were successfully deposited on p-lightly boron-doped diamond (LBDD) substrates by the hydrothermal method. The temperature-dependent optoelectronic properties and carrier transport behavior of the n-TiO NBS/p-LBDD heterojunction were investigated. The photoluminescence (PL) of the heterojunction detected four distinct emission peaks at 402 nm, 410 nm, 429 nm, and 456 nm that have the potential to be applied in white-green light-emitting devices.

View Article and Find Full Text PDF

This study investigates the effects of negative bias temperature (NBT) stress and irradiation on the threshold voltage () of p-channel VDMOS transistors, focusing on degradation, recovery after each type of stress, and operational behavior under varying conditions. Shifts in (Δ) were analyzed under different stress orders, showing distinct influence mechanisms, including defects creation and their removal and electrochemical reactions. Recovery data after each type of stress indicated ongoing electrochemical processes, influencing subsequent stress responses.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the most effective methods in controlling pain during debonding procedures.

Material And Methods: Electronic searches in published and unpublished studies were performed. Restricted to the English language and publication date up to 23/3/2024, the searches in published literature covered the following databases: MEDLINE, PubMed, EMBASE, Tripe, Web of Science, Scopus and PubMed Central.

View Article and Find Full Text PDF

Members of the families Thermosynechococcaceae and Thermostichaceae are well-known unicellular thermophilic cyanobacteria and a non-thermophilic genus was newly classified into the former. Analysis of the codon usage bias (CUB) of cyanobacterial species inhabiting different thermal and non-thermal niches will benefit the understanding of their genetic and evolutionary characteristics. Herein, the CUB and codon context patterns of protein-coding genes were systematically analyzed and compared between members of the two families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!