Effects of the herbicide glyphosate on fish from embryos to adults: a review addressing behavior patterns and mechanisms behind them.

Aquat Toxicol

Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande RS, Brazil.

Published: October 2022

The use of agrochemicals has grown in recent years following the increase in agricultural productivity, to eliminate weeds that can compromise crop yields. The intensive use of these products combined with the lack of treatment of agricultural wastewater is causing contamination of the natural environments, especially the aquatics. Glyphosate [N-(phosphonomethyl) glycine] is the most commonly used herbicide in agriculture worldwide. Studies have shown that this compound is toxic to a variety of fish species at the concentrations of environmental relevance. Glyphosate-based herbicides can affect fish biochemical, physiological, endocrine, and behavioral pathways. Changes in behaviors such as foraging, escaping from predators, and courtship can compromise the survival of species and even communities. The behavior patterns of fish has been shown to be a sensitive tool for risk assessment. In this sense, this review summarizes and discusses the toxic effects of glyphosate and its formulations on the behavior of fish in different life stages. Additionally, behavioral impairments were associated with other negative effects of glyphosate such as energy imbalance, stress responses, AChE inhibition, and physiological and endocrine disturbances, which are evidenced and described in the literature. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2022.106281DOI Listing

Publication Analysis

Top Keywords

behavior patterns
8
physiological endocrine
8
effects glyphosate
8
fish
5
effects herbicide
4
glyphosate
4
herbicide glyphosate
4
glyphosate fish
4
fish embryos
4
embryos adults
4

Similar Publications

Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis.

View Article and Find Full Text PDF

Floodplain forests drive fruit-eating fish diversity at the Amazon Basin-scale.

Proc Natl Acad Sci U S A

January 2025

Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Institut de Recherche pour le Développement, Institut National Polytechnique de Toulouse, Université Toulouse 3 - Paul Sabatier, Toulouse F-31062, France.

Unlike most rivers globally, nearly all lowland Amazonian rivers have unregulated flow, supporting seasonally flooded floodplain forests. Floodplain forests harbor a unique tree species assemblage adapted to flooding and specialized fauna, including fruit-eating fish that migrate seasonally into floodplains, favoring expansive floodplain areas. Frugivorous fish are forest-dependent fauna critical to forest regeneration via seed dispersal and support commercial and artisanal fisheries.

View Article and Find Full Text PDF

Online Mental Health Communities (OMHCs), such as Reddit, have witnessed a surge in popularity as go-to platforms for seeking information and support in managing mental health needs. Platforms like Reddit offer immediate interactions with peers, granting users a vital space for seeking mental health assistance. However, the largely unregulated nature of these platforms introduces intricate challenges for both users and society at large.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!