The determination of secondary volatile degradation products in drying oil extracts is substantial to prevent formation of undesirable metal formates in paintings and/or other artefacts. This study develops a simple, cost-effective, and reliable, high-performance liquid chromatography with diode array detector (HPLC-DAD) method to determine three secondary volatile degradation products (methanol, formaldehyde, and formic acid) in drying oils, including linseed, poppy-seed, and walnut oil. Extraction of analytes was performed using QuEChERS-based procedure followed by metal oxide-based dispersive solid-phase extraction (d-SPE) clean-up and presented a good performance for all of the volatile analytes of interest with recoveries in the range of 90-120% after application of the nanostructured cerium oxide-based (CeO) and zirconia-based (ZrO) sorbents prepared by favorable and ecological-friendly methods. With a new clean-up solution for samples with high-fat content, it was possible to achieve higher recoveries than with commercial Z-Sep/C18 sorbent. In all cases, relative standard deviations (RSD) of less than 10% were achieved. No significant matrix interference was observed due to the application of effective sorbents in nanostructured form. The developed method was applied to samples of drying oils, and it was found that after storage for three months, all methanol was most likely oxidized to formaldehyde and formic acid. The concentrations of formaldehyde were in the range of 260 - 304 μg∙g, while formic acid concentrations ranged between 72 - 386 μg∙g. The highest concentration of formaldehyde (304 μg∙g) and formic acid (386 μg∙g) was found in linseed oil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2022.463490 | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
January 2025
School of Pharmacy, Lanzhou University, Lanzhou 730030 China; Department of Pharmacy, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030 China. Electronic address:
Objective: To develop a rapid, convenient, accurate, and low-residual-effect ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of polymyxin B sulfate and colistin sulfate in the blood of patients with multidrug-resistant bacterial infections, as well as caspofungin acetate in the blood of patients with fungal infections, thus facilitating the rational use of antibiotics in clinical applications.
Methods: All analytes were diluted with 0.2 % aqueous formic acid, and plasma proteins were precipitated using acetonitrile.
Am J Transl Res
December 2024
Department of Pharmacy, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China.
Objectives: The aim of this study was to establish an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the detection of osimertinib in rat plasma, lung and brain tissues.
Methods: Forty-eight rats were randomly divided into an experimental group (receiving osimertinib at doses of 5, 8, and 10 mg/kg) and a control group. After continuous intragastric administration for 15 days, samples of blood, lung, and brain tissue were collected.
J Chromatogr Sci
January 2025
Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain.
An efficient reverse-phase high-performance liquid chromatographic method, based on the design of the experiment approach, was developed for the simultaneous determination of capsiate isomers. Critical method parameters, i.e.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Pesticide Residue Analysis Laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana 141004, Punjab, India.
Validation of Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was performed for estimation of imidacloprid (IM) and its metabolites in maize leaves, immature kernels, mature kernels, stalk, and soil using liquid chromatograph tandem mass spectrometry, coupled with electrospray ionization. The extraction in different matrices of maize and soil was performed using acetonitrile +0.1% formic acid followed by clean-up with primary secondary amine sorbent and anhydrous magnesium sulfate.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department for Chemistry, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark.
A new Ru(II) complex featuring a novel amino-di(N-heterocyclic carbene) CNC pincer ligand, CNC-RuCl(CO) (Ru-1), has been developed and characterised in depth. Ru-1 forms an efficient and durable catalytic formic acid dehydrogenation system in combination with the ionic liquid 1-ethyl-3-methylimidazolium diethylphosphate (EMIM PO(OEt)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!