The upper airways of children undergo developmental changes around age 6, yielding differences between adult and pediatric anatomies. These differences include the cricoid ring area shape, the location of narrowest constriction, and the angle of the epiglottis, all of which are expected to alter local fluid dynamic profiles and subsequent upper airway deposition and downstream aerosol delivery of inhaled therapeutics. In this work, we quantify "pediatric"-like and "adult"-like geometric and fluid dynamic features of two computed tomography (CT)-scan derived models of 6-year-old upper airways in healthy subjects and compare to an idealized model. The two CT-scan models had a mixture of "adult"- and "pediatric"-like anatomic features, with Subject B exhibiting more "pediatric"-like features than Subject A, while the idealized model exhibited entirely "adult"-like features. By computational fluid-particle dynamics, these differences in anatomical features yielded distinct local fluid profiles with altered aerosol deposition between models. Notably, the idealized model better predicted deposition characteristics of Subject A, the more "adult"-like model, including the relationship between the impaction parameter, dQ and the fraction of deposition across a range of flow rates and particle diameters, as well as deposition of an approximate pharmaceutical particle size distribution model. Our results with even this limited dataset suggest that there are key personalized metrics that are influenced by anatomical development, which should be considered when developing pediatric inhalable therapeutics. Quantifying anatomical development and correlating to aerosol deposition has the potential for high-throughput developmental characterization and informing desired aerosol characteristics for pediatric applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167792PMC
http://dx.doi.org/10.1016/j.compbiomed.2022.106058DOI Listing

Publication Analysis

Top Keywords

aerosol deposition
12
idealized model
12
6-year-old upper
8
upper airway
8
upper airways
8
local fluid
8
fluid dynamic
8
features subject
8
anatomical development
8
deposition
7

Similar Publications

: Pulmonary exposure to emissions from manipulating solid surface composite (SSC) materials has been associated with adverse health effects in humans and laboratory animals. Previous and investigations of SSC toxicity have been limited by particle delivery methods that do not fully recapitulate the workplace environment. This study sought to determine the acute SSC-induced pulmonary responses whole-body inhalation exposure.

View Article and Find Full Text PDF

The use of air-jet dry powder inhalers (DPIs) offers a number of advantages for the administration of pharmaceutical aerosols, including the ability to achieve highly efficient and potentially targeted aerosol delivery to the lungs of children using the oral or trans-nasal routes of administration. To better plan targeted lung delivery of pharmaceutical aerosols with these inhalers, more information is needed on the extrathoracic (ET) depositional loss in pediatric subjects when using relatively small (e.g.

View Article and Find Full Text PDF

Virus-laden aerosols play a substantial role in the spread of numerous infectious diseases, particularly in enclosed indoor settings. Ultraviolet-C (UVC) disinfection is known to be a highly efficient method for disinfecting pathogenic airborne viruses. Recent recommendations suggest using far-UVC radiation (222 nm) emitted by KrCl* (krypton-chloride) excimer lamps to disinfect high-risk public spaces due to lower exposure risks than low-pressure (LP) mercury lamps (254 nm).

View Article and Find Full Text PDF

In addition to the known therapeutic indications for cannabidiol, its administration by inhalation appears to be of great interest. Indeed, there is evidence of cannabidiol's efficacy in several physiological pathways, suggesting its potential for a wide range of applications for both local and systemic pulmonary administration like cancers. Significant advances in pulmonary drug delivery have led to innovative strategies to address the challenges of increasing the respirable fraction of drugs and standardizing inhalable products.

View Article and Find Full Text PDF

Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!