Vinylsilanes and vinylboronates are common building blocks for organic synthesis, but direct functionalization of these species without the participation of either the C=C or C-Si/B bonds is rare. Herein, we report a metal-free allylic C-H amination reaction of these vinylmetalloid species that installs a new C-N bond without competing transmetallation or alkene addition. In this transformation, the silicon or boron substituent inverts the usual regioselectivity, directing amination to the site distal to that group. Subsequent cross-coupling or demetallation allows access to complementary regioisomeric products. Density Functional Theory computations revealed that the observed regioselectivity is due to a subtle combination of electronic and counterintuitive steric factors that favor initial attack of selenium at the silicon-bearing carbon atom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202210109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!