The DNA origami technique allows the precise synthesis of complex, biocompatible nanomaterials containing small molecules, biomolecules, and inorganic nanoparticles. The negatively charged phosphates in the backbone make DNA highly water-soluble and require salts to shield its electrostatic repulsion. DNA origamis are therefore not soluble in most organic solvents. While this is not problematic for applications in biochemistry, biophysics, or nanomedicine, other potential applications, processes, and substrates are incompatible with saline solutions, which include the synthesis of many nanomaterials, and reactions in templated synthesis, the operation of nanoelectronic devices, or semiconductor fabrication. To overcome this limitation, we coated DNA origami with amphiphilic poly(ethylene glycol) polylysine block copolymers and transferred them into various organic solvents including chloroform, dichloromethane, acetone, or 1-propanol. Our approach maintains the shape of the nanostructures and protects functional elements bound to the structure, such as fluorophores, gold nanoparticles, or proteins. The DNA origami polyplex micellization (DOPM) strategy hence enables solubilization or a phase transfer of complex structures into various organic solvents, which significantly expands the use of DNA origami for a range of potential applications and technical processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324883 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.2c01508 | DOI Listing |
Molecules
January 2025
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Osaka, Japan.
In the field of chemical biology, DNA origami has been actively researched. This technique, which involves folding DNA strands like origami to assemble them into desired shapes, has made it possible to create complex nanometer-sized structures, marking a major breakthrough in nanotechnology. On the other hand, controlling the folding mechanisms and folded structures of proteins or shorter peptides has been challenging.
View Article and Find Full Text PDFSmall
January 2025
Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
A 3D DNA spatial chip (DSC) based on an icosahedral DNA origami framework is introduced to construct customized circular single-stranded DNA (c-ssDNA) for data storage. Within the confined space of the DSC, thirty addressable location sequences extending from the framework edges are available for designing circular paths and directing the assembly of a series of information oligonucleotides for efficient ligation. This strategy is verified by constructing c-ssDNAs from up to 15 fragments to encode two poems (800 and 860 nucleotides).
View Article and Find Full Text PDFDiscov Nano
January 2025
Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.
View Article and Find Full Text PDFACS Appl Nano Mater
June 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States.
DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada.
Synthetic ssDNA oligonucleotides hold great potential for various applications, including DNA aptamers, DNA digital data storage, DNA origami, and synthetic genomes. In these contexts, precise control over the synthesis of the ssDNA strands is essential for generating combinatorial sequences with user-defined parameters. Desired features for creating synthetic DNA oligonucleotides include easy manipulation of DNA strands, effective detection of unique DNA sequences, and a straightforward mechanism for strand elongation and termination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!