Arginine-rich dipeptide repeat proteins (R-DPRs), abnormal translational products of a GGGGCC hexanucleotide repeat expansion in , play a critical role in -related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the most common genetic form of the disorders (c9ALS/FTD). R-DPRs form liquid condensates in vitro, induce stress granule formation in cultured cells, aggregate, and sometimes coaggregate with TDP-43 in postmortem tissue from patients with c9ALS/FTD. However, how these processes are regulated is unclear. Here, we show that loss of poly(ADP-ribose) (PAR) suppresses neurodegeneration in c9ALS/FTD fly models and neurons differentiated from patient-derived induced pluripotent stem cells. Mechanistically, PAR induces R-DPR condensation and promotes R-DPR-induced stress granule formation and TDP-43 aggregation. Moreover, PAR associates with insoluble R-DPR and TDP-43 in postmortem tissue from patients. These findings identified PAR as a promoter of R-DPR toxicity and thus a potential target for treating c9ALS/FTD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359073PMC
http://dx.doi.org/10.1126/scitranslmed.abq3215DOI Listing

Publication Analysis

Top Keywords

arginine-rich dipeptide
8
dipeptide repeat
8
repeat proteins
8
stress granule
8
granule formation
8
tdp-43 postmortem
8
postmortem tissue
8
tissue patients
8
polyadp-ribose promotes
4
promotes toxicity
4

Similar Publications

Arginine-rich dipeptide repeat proteins (R-DPRs) are highly toxic proteins found in patients with C9orf72-linked amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). R-DPRs can cause toxicity by disrupting the natural phase behavior of RNA-binding proteins (RBPs). Mitigating this abnormal phase behavior is, therefore, crucial to reduce R-DPR-induced toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • * R-DPRs bind much stronger to the protein G3BP1 than RNA does, promoting the formation of cellular droplets through a process called liquid-liquid phase separation (LLPS), and these droplets can eventually aggregate harmful proteins linked to ALS.
  • * Differences in pathology between two types of R-DPRs, poly-GR and poly-PR, suggest that poly-GR primarily targets G3BP1 in stress granules, rather than NPM1 in nucleoli, indicating
View Article and Find Full Text PDF

Biomolecular condensates provide a mechanism for compartmentalization of biomolecules in eukaryotic cells. These liquid-like condensates are formed via liquid-liquid phase separation, by a plethora of interactions, and can mediate several biological processes in healthy cells. Expansions of dipeptide repeat proteins, DPRs, in which arginine rich DPRs like poly-proline-arginine (PR), and poly-glycine-arginine (GR), partition RNA into condensates can however induce cell toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • * These poly-GR proteins disrupt general protein synthesis by interfering with the translation process, particularly slowing down the translation of certain transcripts.
  • * The resulting stress from stalled translation causes ribosome collisions and triggers a harmful ribotoxic stress response, but inhibiting specific pathways can reduce toxicity and improve neuron survival in affected patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!