Macroautophagy/autophagy occurs basally under nutrient-rich conditions in most mammalian cells, contributing to protein and organelle quality control, and protection against aging and neurodegeneration. During autophagy, lysosomes are heavily utilized via their fusion with autophagosomes and must be repopulated to maintain autophagic degradative capacity. During starvation-induced autophagy, lysosomes are generated via biogenesis under the control of TFEB (transcription factor EB), or by the recycling of autolysosome membranes via autophagic lysosome reformation (ALR). However, these lysosome repopulation processes do not operate under nutrient-rich conditions. In our recent study, we identify a sequential phosphoinositide conversion pathway that enables lysosome repopulation under nutrient-rich conditions to facilitate basal autophagy. Phosphatidylinositol-3,4-bisphosphate (PtdIns[3,4]P) signals generated downstream of phosphoinositide 3-kinase alpha (PI3Kα) during growth factor stimulation are converted to phosphatidylinositol-3-phosphate (PtdIns3P) on endosomes by INPP4B (inositol polyphosphate-4-phosphatase type II B). We show that PtdIns3P is retained as endosomes mature into endolysosomes, and serves as a substrate for PIKFYVE (phosphoinositide kinase, FYVE-type zinc finger containing) to generate phosphatidylinositol-3,5-bisphosphate (PtdIns[3,5]P) to promote SNX2-dependent lysosome reformation, basal autophagic flux and protein aggregate degradation. Therefore, endosome maturation couples nutrient signaling to lysosome repopulation during basal autophagy by delivering PI3Kα-derived PtdIns3P to endolysosomes for PtdIns(3,5)P-dependent lysosome reformation. ALR: autophagic lysosome reformation; INPP4B: inositol polyphosphate-4-phosphatase type II B; PI3Kα: phosphoinositide 3-kinase alpha; PIKFYVE: phosphoinositide kinase FYVE-type zinc finger containing; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,4)P: phosphatidylinositol-3,4-bisphosphate; PtdIns(3,5)P phosphatidylinositol-3,5-bisphosphate; SNX2 sorting nexin 2; PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012913PMC
http://dx.doi.org/10.1080/15548627.2022.2124499DOI Listing

Publication Analysis

Top Keywords

lysosome reformation
20
basal autophagy
12
nutrient-rich conditions
12
lysosome repopulation
12
endosome maturation
8
maturation couples
8
couples nutrient
8
nutrient signaling
8
lysosome
8
signaling lysosome
8

Similar Publications

Autophagy, a cellular recycling mechanism, utilizes lysosomes for cellular degradation. Prolonged autophagy reduces the pool of functional lysosomes in the cell. However, lysosomal homeostasis is maintained through the regeneration of functional lysosomes during the terminal stage of autophagy, i.

View Article and Find Full Text PDF

Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by Leucine-Rich Repeat Kinase 2 [LRRK2]), wherein damaged lysosomes generate tubules sorted into mobile vesicles. LYTL is orchestrated by the Parkinson's disease-associated kinase LRRK2 that recruits the motor adaptor protein and RHD family member JIP4 to lysosomes via phosphorylated RAB proteins.

View Article and Find Full Text PDF

Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases.

View Article and Find Full Text PDF

MCOLN1/TRPML1 in the lysosome: a promising target for autophagy modulation in diverse diseases.

Autophagy

August 2024

Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital, China of Medical University, Shenyang, Liaoning China.

MCOLN1/TRPML1 is a nonselective cationic channel specifically localized to the late endosome and lysosome. With its property of mediating the release of several divalent cations such as Ca, Zn and Fe from the lysosome to the cytosol, MCOLN1 plays a pivotal role in regulating a variety of cellular events including endocytosis, exocytosis, lysosomal biogenesis, lysosome reformation, and especially in Macroautophagy/autophagy. Autophagy is a highly conserved catabolic process that maintains cytoplasmic integrity by removing superfluous proteins and damaged organelles.

View Article and Find Full Text PDF

SNX8 enables lysosome reformation and reverses lysosomal storage disorder.

Nat Commun

March 2024

The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China.

Article Synopsis
  • Lysosomal Storage Disorders (LSDs) are genetic diseases caused by mutations affecting lysosome function, leading to enlarged lysosomes and storage issues, with no current effective routine treatments.
  • The protein SNX8 is crucial for the process of lysosome reformation, and its loss can result in LSD-like symptoms; however, increasing SNX8 levels can alleviate these symptoms in cells and mice.
  • Researchers discovered small molecules that enhance the binding of SNX8 to lysosomes and showed that these compounds can reverse LSD symptoms in both human cells and mice, suggesting potential new treatments for these disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!