Nanoarchitectonics for Photo-Controlled Intracellular Drug Release in Immune Modulation.

ACS Appl Mater Interfaces

Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States.

Published: September 2022

Local stimuli differentiate monocytes into M2-like macrophages that mechanistically drive the pathologies in cancer and age-related macular degeneration (AMD). A photo-controlled nanodrug that halts macrophage polarization through Rho-associated kinase (ROCK) inhibition was developed. A small-molecule ROCK inhibitor, fasudil, was conjugated to a photo-responsive group and a short poly(ethylene glycol) (PEG) chain. This resulted in the novel amphiphilic prodrug, PEG-2-(4'-(di(prop-2-yn-1-yl)amino)-4-nitro-[1,1'-biphenyl]-yl)propan-1-ol (PANBP)-Fasudil, that spontaneously formed micelles. Ultraviolet (UV) irradiation of PEG-PANBP-Fasudil nanoparticles rapidly released fasudil. For visualization of linker degradation, a reporter nanoprobe was synthesized, in which 2-Me-4-OMe TokyoGreen (TG), a fluorophore that does not fluoresce in conjugation, was incorporated. Irradiation of nanoprobe-laden monocytes activated the reporter fluorophore. Cytokine stimulation differentiated monocytes into macrophages, while UV irradiation prevented polarization of PEG-PANBP-Fasudil nanoparticle-laden monocytes. Nanoarchitectonics-based design opens new possibilities for intracellular drug delivery and precise spatiotemporal immune cell modulation toward the development of new therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c12440DOI Listing

Publication Analysis

Top Keywords

intracellular drug
8
nanoarchitectonics photo-controlled
4
photo-controlled intracellular
4
drug release
4
release immune
4
immune modulation
4
modulation local
4
local stimuli
4
stimuli differentiate
4
monocytes
4

Similar Publications

Alzheimer's disease (AD), a prevalent neurodegenerative disorder, is characterized by mitochondrial dysfunction and immune dysregulation. This study is aimed at developing a risk prediction model for AD by integrating multi-omics data and exploring the interplay between mitochondrial energy metabolism-related genes (MEMRGs) and immune cell dynamics. We integrated four GEO datasets (GSE132903, GSE29378, GSE33000, GSE5281) for differential gene expression analysis, functional enrichment, and weighted gene co-expression network analysis (WGCNA).

View Article and Find Full Text PDF

Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper.

View Article and Find Full Text PDF

[Mechanism of ginsenoside Rg_1 in regulating autophagy through miR-155/Notch1/Hes1 pathway to attenuate hypoxia/reoxygenation injury in HL-1 cells].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.

This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.

View Article and Find Full Text PDF

To investigate the therapeutic effect of Fuzheng Tongluo Granules on idiopathic pulmonary fibrosis(IPF) and its mechanism. Seventy-two SD rats were randomly divided into the control group, model group, pirfenidone group(162 mg·kg~(-1)), and low-, medium-and high-dose of Fuzheng Tongluo Granules groups(2.63, 5.

View Article and Find Full Text PDF

Deepening Cisplatin sensitivity on Oral Squamous cell Carcinoma cell lines after PON2 knockdown: A FTIRM investigation.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Dipartimento di Scienze Cliniche, Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, Via Tronto 10/a 60020 Ancona, Italy.

Cisplatin is a platinum-based chemotherapy drug with antimicrobial and antitumoral activity, largely used for a long time in the treatment of several cancers, including the Oral Squamous Cell Carcinoma (OSCC), which is one of the most frequent neoplasms of the oral cavity. Due to its aggressiveness and metastatic invasion, OSCC is characterized by poor outcome, often related also to chemoresistance mechanisms. The intracellular enzyme paraoxonase-2 (PON2) normally acts defending cells from the damages induced by Reactive Oxygen Species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!