Changes in placental lipid metabolism influence the delivery of lipids critical for fetal development and fetal requirements for lipids change across gestation. We hypothesized that placental lipid content and metabolic enzyme protein levels increase across gestation and are elevated in obesity. Placentas (4-40 weeks' gestation) were collected from control (body mass index, BMI = 18.5-24.9, n=37) and obese (BMI > 30, n=19) pregnant women. Trophoblast villous tissue was homogenized and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) for phospholipid and triacylglycerol (TAG) analysis and western blot for protein quantification. The placental content of TAG species and nine of 35 identified phosphatidylcholines (PC) were significantly higher (P<0.05) in first trimester (28-79%, 10-47%, respectively). Furthermore, two TAG and three PC differed by maternal BMI and were significantly increased (P<0.05) in the obese group in first trimester (72-87%, 88-119%, respectively). Placental protein abundance of glycerol-2-phosphate (GPAT3) and 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 (AGPAT2), involved in de novo synthesis of PC and TAG, were higher (P<0.05) in the first trimester (66 and 74%, respectively). The protein abundance of the PC-remodeling enzyme PLA2G4c was also higher (63%) in first trimester (P<0.05). In conclusion, the placental content of many phospholipid and TAG species and the protein level of associated synthesis enzymes are higher in first-trimester human placenta. The high PC content may be related to the rapid membrane expansion in early pregnancy and the low placental oxygen tension may promote the accumulation of tissue TAGs in first trimester. Maternal obesity had only limited impact on placental lipid content and metabolic enzyme protein abundance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108672 | PMC |
http://dx.doi.org/10.1042/CS20220479 | DOI Listing |
Int J Mol Sci
December 2024
Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria.
The present study aimed to investigate and compare oxidative stress biomarkers and antioxidant enzyme activity in the serum of women at risk of developing preeclampsia (PE) to prevent adverse pregnancy outcomes through early intervention. Changes in soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) levels were measured between 11 and 13 gestational weeks (gw.) before the onset of preeclampsia and its associated complications.
View Article and Find Full Text PDFLife (Basel)
November 2024
Department of Surgical Sciences, Gynecology and Obstetrics 1, City of Health and Science-S. Anna University Hospital, University of Turin, 10126 Turin, Italy.
Background: Pregnancy has been identified as a risk factor for severe COVID-19, leading to maternal and neonatal complications. The safety and effects of the SARS-CoV-2 vaccination during pregnancy, particularly on placental function and oxidative stress (OxS), remain underexplored. We investigated the impact of vaccination on third-trimester placental antioxidant defense markers.
View Article and Find Full Text PDFPlacenta
December 2024
Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Faculdade de Medicina Veterinária da Universidade Lusófona e Instituto Politécnico da Lusofonia, COFAC - Cooperativa de Formação e Animação Cultural, C.R.L., Campo Grande 376, 1749-024, Lisboa, Portugal; Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal. Electronic address:
Background And Aim: Pregnancy after the age of 35 is correlated with an increased risk of impaired placentation and the development of pregnancy-associated complications. Changes in uterine redox balance seem to play a role in these settings. In this work, we hypothesized that local redox dysregulation impacts the placenta metabolic profile.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Obstetrics and Gynecology and Reproductive Medicine, Peking University First Hospital, Beijing, China.
Intrauterine growth restriction (IUGR) caused by placental dysfunctions leads to fetal growth defects. Maternal microbiome and its metabolites have been reported to promote placental development. Milk fat globule membrane (MFGM) is known for its diverse bioactive functions, while the effects of gestational MFGM supplementation on the maternal gut microbiota, placental efficiency, and fetal development remained unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!