The Shape of Phylogenies Under Phase-Type Distributed Times to Speciation and Extinction.

Bull Math Biol

School of Natural Sciences (Discipline of Mathematics), University of Tasmania, Hobart, 7005, Australia.

Published: September 2022

Phylogenetic trees describe relationships between extant species, but beyond that their shape and their relative branch lengths can provide information on broader evolutionary processes of speciation and extinction. However, currently many of the most widely used macro-evolutionary models make predictions about the shapes of phylogenetic trees that differ considerably from what is observed in empirical phylogenies. Here, we propose a flexible and biologically plausible macroevolutionary model for phylogenetic trees where times to speciation or extinction events are drawn from a Coxian phase-type (PH) distribution. First, we show that different choices of parameters in our model lead to a range of tree balances as measured by Aldous' [Formula: see text] statistic. In particular, we demonstrate that it is possible to find parameters that correspond well to empirical tree balance. Next, we provide a natural extension of the [Formula: see text] statistic to sets of trees. This extension produces less biased estimates of [Formula: see text] compared to using the median [Formula: see text] values from individual trees. Furthermore, we derive a likelihood expression for the probability of observing an edge-weighted tree under a model with speciation but no extinction. Finally, we illustrate the application of our model by performing both absolute and relative goodness-of-fit tests for two large empirical phylogenies (squamates and angiosperms) that compare models with Coxian PH distributed times to speciation with models that assume exponential or Weibull distributed waiting times. In our numerical analysis, we found that, in most cases, models assuming a Coxian PH distribution provided the best fit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474389PMC
http://dx.doi.org/10.1007/s11538-022-01072-wDOI Listing

Publication Analysis

Top Keywords

speciation extinction
16
[formula text]
16
times speciation
12
phylogenetic trees
12
distributed times
8
empirical phylogenies
8
text] statistic
8
speciation
5
trees
5
shape phylogenies
4

Similar Publications

Negative scaling relationships between both speciation and extinction rates, on the one hand, and the age or duration of organismal groups on the other, are pervasive and recovered in both molecular phylogenetic and fossil time series. The agreement between molecular and fossil data hints at a universal cause and potentially at incongruence between micro- and macroevolution. However, the existence of negative rate scaling in fossil time series has not undergone the same level of scrutiny as in molecular data.

View Article and Find Full Text PDF

Aim: Species age, the elapsed time since origination, can give insight into how species longevity might influence eco-evolutionary dynamics, which has been hypothesized to influence extinction risk. Traditionally, species' ages have been estimated from fossil records. However, numerous studies have recently used the branch lengths of time-calibrated phylogenies as estimates of the ages of extant species.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how intercontinental movements of certain plant lineages (Hydrangeaceae and Loasaceae) may promote ecological opportunities and species diversity.
  • Researchers reconstructed a phylogeny using molecular data and analyzed speciation rates, finding that while some clades showed increased diversification, it wasn't linked to new continental colonization.
  • The findings suggest that climate change in the Miocene played a more significant role in species diversification rather than dispersal across continents, indicating that changes in habitats drove evolutionary changes instead of location shifts.
View Article and Find Full Text PDF

Background And Aims: The cosmopolitan Botrychium lunaria group belong to the most species rich genus of the family Ophioglossaceae and was considered to consist of two species until molecular studies in North America and northern Europe led to the recognition of multiple new taxa. Recently, additional genetic lineages were found scattered in Europe, emphasizing our poor understanding of the global diversity of the B. lunaria group, while the processes involved in the diversification of the group remain unexplored.

View Article and Find Full Text PDF

The Metapopulation Bridge to Macroevolutionary Speciation Rates: A Conceptual Framework and Empirical Test.

Ecol Lett

January 2025

Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.

Whether large-scale variation in lineage diversification rates can be predicted by species properties at the population level is a key unresolved question at the interface between micro- and macroevolution. All else being equal, species with biological attributes that confer metapopulation stability should persist more often at timescales relevant to speciation and so give rise to new (incipient) forms that share these biological traits. Here, we develop a framework for testing the relationship between metapopulation properties related to persistence and phylogenetic speciation rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!