This study evaluated the effects of dietary administration of two indigenous Bacillus (A: basal control diet; B: 0.15 g/kg of Bacillus subtilis; C: 0.1 g/kg of Bacillus subtilis and 0.05 g/kg of Bacillus licheniformis; D: 0.05 g/kg of Bacillus subtilis and 0.1 g/kg of Bacillus licheniformis; E: 0.15 g/kg of Bacillus licheniformis) on the digestive enzyme activities, intestinal morphology, intestinal immune and barrier-related genes relative expression levels, and intestinal flora of Rhynchocypris lagowskii. The results showed that the fold height, lamina propria width, and muscle layer thickness of midgut and hindgut in group C were significantly higher than that of group A (P < 0.05). The activities of protease, amylase, and lipase in group C were significantly higher than those of group A (P < 0.05). The relative expression levels of IL-1β and IL-8 in the intestine of group C were significantly downregulated, and the relative expression levels of IL-10 and TGF-β were significantly upregulated (P < 0.05). The relative expression levels of Claudin-2 in group A significantly increased and the relative expression levels of Claudin-4 in group A significantly reduced compared with other groups (P < 0.05). The relative expression levels of ZO-1 in groups C and D were significantly higher than those of other groups (P < 0.05). The Bacillus in the intestine of group C has the highest relative abundance among all groups. Overall, it can generally be concluded that dietary supplementation of indigenous Bacillus subtilis and Bacillus licheniformis (group C) can improve the intestinal morphology, digestion, and absorption enzyme activities, enhance intestinal mucosal immunity and barrier function, and maintain the intestinal microbial balance of R. lagowskii.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-022-01121-0DOI Listing

Publication Analysis

Top Keywords

bacillus subtilis
12
bacillus licheniformis
12
bacillus
8
indigenous bacillus
8
intestinal morphology
8
morphology intestinal
8
intestinal immune
8
rhynchocypris lagowskii
8
015 g/kg bacillus
8
subtilis 01 g/kg
8

Similar Publications

In the spore-forming bacterium Bacillus subtilis transcription and translation are uncoupled and the translational machinery is located at the cell poles. During sporulation, the cell undergoes morphological changes including asymmetric division and chromosome translocation into the forespore. However, the fate of translational machinery during sporulation has not been described.

View Article and Find Full Text PDF

This study evaluated the effect of wheat germ oil (WGO), Bacillus subtilis, and their combination on growth performance, immune response, nutrient digestibility, intestinal microbial, oxidative status, and gene expression in heat-stressed broilers. Four hundred one-day-old male Ross 308 broilers were distributed into five pens (20 birds/pen) in four experimental groups: a control (CON) without additives, WGO group fed diet with WGO at 200 mg.kg, BS group fed diet with B.

View Article and Find Full Text PDF

Bacterial biomineralization of heavy metals and its influencing factors for metal bioremediation.

J Environ Manage

January 2025

Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India. Electronic address:

Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation.

View Article and Find Full Text PDF

Sucrose laurate, a commonly used emulsifier, was investigated to explore its preservative effect combined with nisin using Bacillus subtilis as indicator. The results suggested that sucrose laurate and nisin exhibited synergistic antibacterial effect with the fractional inhibitory concentration index of 0.5.

View Article and Find Full Text PDF

The bacterium Bacillus subtilis undergoes asymmetric cell division during sporulation, producing a mother cell and a smaller forespore connected by the SpoIIQ-SpoIIIA (or Q-A) channel. The two cells differentiate metabolically, and the forespore becomes dependent on the mother cell for essential building blocks. Here, we investigate the metabolic interactions between mother cell and forespore using genome-scale metabolic and expression models as well as experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!