Animals integrate sensory stimuli presented at the past and present, assess the changes in their surroundings and navigate themselves toward preferred environment. Identifying the neural mechanisms of such sensory integration is pivotal to understand how the nervous system generates perception and behavior. Previous studies on thermotaxis behavior of Caenorhabditis elegans suggested that a single thermosensory neuron AFD plays an important role in integrating the past and present temperature information and is essential for the neural computation that drives the animal toward the preferred temperature region. However, the molecular mechanisms by which AFD executes this neural function remained elusive. Here we report multiple forward genetic screens to identify genes required for thermotaxis. We reveal that kin-4, which encodes the C. elegans homolog of microtubule-associated serine threonine kinase, plays dual roles in thermotaxis and can promote both cryophilic and thermophilic drives. We also uncover that a thermophilic defect of mutants for mec-2, which encodes a C. elegans homolog of stomatin, can be suppressed by a loss-of-function mutation in the gene crh-1, encoding a C. elegans homolog CREB transcription factor. Expression of crh-1 in AFD restored the crh-1-dependent suppression of the mec-2 thermotaxis phenotype, indicating that crh-1 can function in AFD to regulate thermotaxis. Calcium imaging analysis from freely moving animals suggest that mec-2 and crh-1 regulate the neuronal activity of the AIY interneuron, a postsynaptic partner of the AFD neuron. Our results suggest that a stomatin family protein can control the dynamics of neural circuitry through the CREB-dependent transcriptional regulation within a sensory neuron.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635662 | PMC |
http://dx.doi.org/10.1093/g3journal/jkac248 | DOI Listing |
Sci Rep
January 2025
Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, 569-1094, Osaka, Japan.
Recent advances in the clinical development of oligonucleotide therapeutics, such as antisense oligonucleotides (ASOs) and small interfering RNAs, have attracted attention as promising therapeutic modalities for genetic and intractable diseases. These oligonucleotide therapeutics exert their efficacy by binding to target RNAs present within cells; however, the mechanisms underlying their cellular uptake, especially their passage through membranes, remain largely unclear. In the nematode, Caenorhabditis elegans, the multi-pass transmembrane protein, SID-1, is involved in the cellular uptake of double-stranded RNAs.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
The majority of Aspergillus fumigatus reproduction occurs asexually, with large numbers of conidiophores producing small hydrophobic conidia dispersed aerially. When healthy hosts inhale conidia, the mucosal cilia and phagocytosis by the innate immune system can remove them. However, in immunocompromised hosts, the conidia are not removed, which allows them to germinate, forming mycelium that invades host tissues and causes disease.
View Article and Find Full Text PDFGenes Dev
December 2024
Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, New York, New York 10025, USA.
The pan-neuronally expressed and phylogenetically conserved CUT homeobox gene orchestrates pan-neuronal gene expression throughout the nervous system of As in many other species, including humans, is encoded by a complex locus that also codes for a Golgi-localized protein, called CASP (Cux1 alternatively spliced product) in humans and CONE-1 ("CASP of nematodes") in How gene expression from this complex locus is controlled-and, in , directed to all cells of the nervous system-has not been investigated. We show here that pan-neuronal expression of CEH-44/CUX is controlled by a pan-neuronal RNA splicing factor, UNC-75, the homolog of vertebrate CELF proteins. During embryogenesis, the locus exclusively produces the Golgi-localized CONE-1/CASP protein in all tissues, but upon the onset of postmitotic terminal differentiation of neurons, UNC-75/CELF induces the production of the alternative CEH-44/CUX CUT homeobox gene-encoding transcript exclusively in the nervous system.
View Article and Find Full Text PDFMol Biol Cell
December 2024
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Hook homolog ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex.
View Article and Find Full Text PDFFood Funct
December 2024
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
Astaxanthin is a xanthophyll carotenoid which has been associated with a number of health-promoting effects, including anti-aging; however, the underlying mechanisms are not fully understood. In the present study, it was found that astaxanthin promoted the longevity of wild-type (N2) (). The lifespan-extending effect of astaxanthin was associated with a significant decrease of lipofuscin accumulation and the reduction of the age-related decline in spontaneous motility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!