The present study assesses the risk of eutrophication of a large semiarid reservoir under SSP2-4.5 and SSP5-8.5 scenarios for three future periods and different conditions of influent total phosphorus (TP) concentration and reservoir withdrawal. An integrated approach coupling climate, hydrological and water quality models was proposed for forecasting the climate change impacts on the trophic condition of the reservoir. The projected TP concentrations were organized as probability-based cumulative distribution functions to quantify the risk of eutrophication. The results indicated changes of eutrophication status in the three future periods, with the end of the 21st century experiencing the highest impacts on water quality. On the other hand, major reductions both in the inlet TP concentration and the reservoir withdrawal are necessary to significantly improve the trophic status and minimize the risk of eutrophication. The results also showed that the dry period is more susceptible to eutrophication than the rainy period, suggesting that tropical semiarid reservoirs are more vulnerable to eutrophication under climate change than reservoirs in other regions of the world. The proposed approach and model results are important to better understand the impact of climate change on reservoir water quality and improve water resources management in tropical semiarid regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202220201689 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!