The metabolic changes associated with intrauterine growth restriction (IUGR) particularly affect the liver, which is a central metabolic organ and contributes significantly to the provision of energy and specific nutrients and metabolites. Therefore, our aim was to decipher and elucidate the molecular pathways of developmental processes mediated by miRNAs and mRNAs, as well as the metabolome in fetal liver tissue in IUGR compared to appropriate for gestational age groups (AGA). Discordant siblings representing the extremes in fetal weight at day 63 post conception (dpc) were selected from F2 fetuses of a cross of German Landrace and Pietrain. Most of the changes in the liver of IUGR at midgestation involved various lipid metabolic pathways, both on transcript and metabolite levels, especially in the category of sphingolipids and phospholipids. Differentially expressed miRNAs, such as miR-34a, and their differentially expressed mRNA targets were identified. Sex-specific phenomena were observed at both the transcript and metabolite levels, particularly in male. This suggests that sex-specific adaptations in the metabolic system occur in the liver during midgestation (63 dpc). Our multi-omics network analysis reveals interactions and changes in the metabolic system associated with IUGR and identified an important biosignature that differs between IUGR and AGA piglets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9471991 | PMC |
http://dx.doi.org/10.1098/rsob.220151 | DOI Listing |
Crit Care
January 2025
Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Tobacco Science, Guizhou University, Guiyang, 550025, China.
Aquaporins are widely present in the plant kingdom and play important roles in plant response to abiotic adversity stresses such as water and temperature extremes. In this study, we investigated the regulatory role of NTPIP2;4 on drought tolerance in tobacco at physiological and transcriptional levels. In this experiment, we constructed an NtPIP2;4 overexpression vector and genetically transformed tobacco variety 'K326' to investigate the mechanism of NtPIP2;4 gene in regulating drought tolerance in tobacco at physiological and transcriptomic levels.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
Background: Salinity stress impairs cotton growth and fiber quality. Protoplasts enable elucidation of early salt-responsive signaling. Elucidating crop tolerance mechanisms that ameliorate these diverse salinity-induced stresses is key for improving agricultural productivity under saline conditions.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, University of Manchester, Manchester, UK.
Cells display a range of mechanical activities generated by motor proteins powered through catalysis. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven molecular motors.
View Article and Find Full Text PDFSci Rep
January 2025
Biomedical Research Center, Qatar University, P.O Box 2713, Doha, Qatar.
Regular aerobic exercise has a significant impact on glucose metabolism and lipid profiles, contributing to overall health improvement. However, evidence for optimal exercise duration to achieve these effects is limited. This study aims to explore the effects of 4 and 8 weeks of moderate-intensity aerobic exercise on glucose metabolism, lipid profiles, and associated metabolic changes in young female students with insulin resistance and varying body mass, seeking to determine the optimal duration for physiological adaptations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!