The structure and distribution patterns of Himalayan vegetation are poorly explored, and research on species composition along the elevation gradient in these mountain ranges is still deficient. The current study was undertaken to analyze the variation and pattern of plant species composition along a vertical gradient in northwestern Himalaya, India. A total of 18 sites were selected along an elevation gradient ranging from 2200 to 3900 m asl positioned at an interval of 100 m. The Renyi diversity profile, non-metric multidimensional scaling based on the Bray-Curtis dissimilarity metric and beta diversity components among the elevation belts were calculated. Furthermore, to study the influence of altitude on species richness and diversity, a generalized additive model was created. Two hundred and ten plant species representing 66 families and 147 genera were recorded. The Renyi diversity profiles show that the lower and mid-altitudes had rich species diversity. The results of the non-metric multidimensional scaling analysis show a considerable variation in the total plant species composition among the studied elevation belts. The observed multiple-site Sorensen dissimilarity index across the studied elevation belts was very high. The contribution of species replacement or the turnover component to the observed dissimilarity was much higher than the nestedness component. Furthermore, the herbaceous and tree richness showed a significant decrease with increase in elevation; however, the richness of shrubs showed a bimodal pattern. The present study increases our understanding of the trends and patterns of species richness along the vertical gradient in the Himalayan region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312975 | PMC |
http://dx.doi.org/10.3390/biology11071064 | DOI Listing |
Drug Dev Ind Pharm
January 2025
Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil.
Background: , a notable plant species, has garnered interest for its medicinal properties, including anti-inflammatory, antibacterial and antiviral effects. A vaccine for Chikungunia virus is still under evaluation and no specific antiviral drug has been licensed to date.
Objective: The work investigated antiviral activity of ethyl acetate (EAEF) and methanolic (EMF) extracts from leaves in mammalian cells exposed to (CHIKV).
Mol Plant
January 2025
State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of phloem-feeding whitefly (Bemisa tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum).
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA.
Premise: Prairies are among the most threatened biomes due to changing patterns of climate and land use, yet information on genetic variation in key species that would inform conservation is often limited. We assessed evidence for the geographic scale of population-level variation in growth of two species of prairie clover and of their symbiotic associations with nitrogen-fixing bacteria.
Methods: Seed representing two species, Dalea candida and D.
Chin Med
January 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea.
Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.
View Article and Find Full Text PDFPlant Methods
January 2025
College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
Background: Virus-induced gene silencing (VIGS) is a rapid and powerful method for gene functional analysis in plants that pose challenges in stable transformation. Numerous VIGS systems based on Agrobacterium infiltration has been widely developed for tender tissues of various plant species, yet none is available for recalcitrant perennial woody plants with firmly lignified capsules, such as tea oil camellia. Therefore, there is an urgent need for an efficient, robust, and cost-effective VIGS system for recalcitrant tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!