Recent global data indicates a worldwide increase in polydrug use associated with a shift from recreational to productive habits of consumption. Such non-responsible abuse of substances (alcohol, cocaine, heroin, etc.) is likely to lead to addictive disorders that are characterized by various neuropsychopharmacological effects. A main cognitive function involved in the onset and long-term maintenance of addiction is reactive inhibition, i.e., the ability to withhold a prepotent motor dominant response. In the present study, 63 (poly)drug user patients who were undergoing a detoxification program, in addition to 19 healthy controls matched for gender, age, and education, were subjected to a "contextual Go/No-Go task" with concomitant electroencephalography. Stimuli were superimposed on three contextual backgrounds: control (black screen), drug-unrelated (neutral pictures), or drug-related (pictures related to drug consumption). Of these patients, 23 were cocaine users (CU), 21 were heroin users (HU), and 19 were polydrug users (PDU). The main results showed that (1) at the behavioral level, more commission errors occurred with the PDU patients compared to the healthy controls; (2) at the neurophysiological level, specific alterations were found on classical event-related potentials that index reactive inhibition. Indeed, the higher rate of errors in the PDU group was subtended by both reduced amplitude and latency on the ∆N2 component and increased ∆P3 latency compared to controls. These data clearly suggest a more deleterious impact of polydrug use on inhibitory functions. In addition, our results provide evidence of reduced ERN amplitude in cocaine users, suggesting that impaired performance monitoring and error-processing may support impaired awareness, thereby preventing these patients from changing their behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312501PMC
http://dx.doi.org/10.3390/biology11071029DOI Listing

Publication Analysis

Top Keywords

reactive inhibition
12
cocaine heroin
8
polydrug users
8
event-related potentials
8
healthy controls
8
cocaine users
8
polydrug
5
users
5
comparison neural
4
neural correlates
4

Similar Publications

This study investigated the effects of long-term serum starvation on autophagy, metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) and elucidated the role of autophagy in skeletal muscle development. Our findings provide a theoretical basis for improving meat production in domestic pigs. The SMSCs isolated and preserved in our laboratory were revived and divided into six groups based on the culture medium serum concentration to simulate varying levels of serum starvation: 20% serum (control group), 15% serum (mild serum starvation group), 5% serum (severe serum starvation group), and their autophagy inhibition groups supplemented with 3-methyladenine.

View Article and Find Full Text PDF

Polyunsaturated fatty acids in particular omega-3 fatty acids, such as docosahexaenoic acid (DHA), are essential nutrients and components of the plasma membrane. They are involved in various processes, including synaptic development, functionality, integrity, and plasticity, and are therefore thought to have general neuroprotective properties. Considerable research evidence further supports the beneficial effects of omega-3 fatty acids, specifically on mitochondria, through their antioxidant and anti-apoptotic properties, making them an attractive addition in treatment options for neurodegenerative disorders in which mitochondrial alterations are commonly observed.

View Article and Find Full Text PDF

GV1001, hTERT Peptide Fragment, Prevents Doxorubicin-Induced Endothelial-to-Mesenchymal Transition in Human Endothelial Cells and Atherosclerosis in Mice.

Cells

January 2025

The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, University of California, 714 Tiverton Ave, Los Angeles, CA 90095, USA.

Doxorubicin is a highly effective anticancer agent, but its clinical use is restricted by severe side effects, including atherosclerosis and cardiomyopathy. These complications are partly attributed to doxorubicin's ability to induce endothelial-to-mesenchymal transition (EndMT) in vascular endothelial cells, a critical process in the initiation and progression of atherosclerosis and cardiomyopathy. GV1001, a multifunctional peptide with anti-inflammatory, anti-cancer, antioxidant, and anti-Alzheimer's properties, has demonstrated inhibition of EndMT.

View Article and Find Full Text PDF

Application of Nano-Titanium Dioxide in Food Antibacterial Packaging Materials.

Bioengineering (Basel)

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.

Food waste and food safety issues caused by food spoilage have been brought into focus. The inhibition of food spoilage bacteria growth is the key to maintaining food quality and extending the shelf life of food. Photodynamic inactivation (PDI) is an efficient antibacterial strategy which provides a new idea for the antibacterial preservation of food.

View Article and Find Full Text PDF

A multifunctional photothermal electrospun PLGA/MoS@Pd nanofiber membrane for diabetic wound healing.

Regen Biomater

December 2024

Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.

Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!