Porcine epidemic diarrhea virus (PEDV) infection is an important acute diarrheal disease of swine that results in economic and industrial losses worldwide. The clinical manifestations in infected piglets are severe diarrhea, dehydration with milk curd indigestion, leading to death. The diagnosis of PEDV is essential for monitoring and managing the disease. PEDV can be detected and identified by serology and the nucleic acid of the virus in clinical samples. Therefore, a novel isothermal amplification and detection technique, reverse transcription-recombinase polymerase amplification couple nucleic acid lateral flow (RT-RPA-NALF) was developed for the rapid detection of PEDV. Qualitative reverse transcription-polymerase chain reaction (RT-qPCR) was established as the gold standard assay to compare results. Specific primer pairs and probes were designed, and RT-RPA conditions were optimized to amplify the M gene of PEDV. The established RT-RPA-NALF assay could finish in 25 min at a temperature of 42 °C and the amplicon interpreted by visual detection. The developed RT-RPA-NALF assay was specific to the M gene of PEDV, did not detect other common swine diarrhea pathogens, and showed minimal detection at 10 TCID/mL PEDV. The RT-RPA-NALF assay can detect PEDV in 5 simulated fecal samples. Furthermore, in 60 clinical fecal samples, the results of RT-RPA-NALF correlated with RT-qPCR assay, which provides sensitivity of 95.65% and specificity of 100%, with a coincident rate of 98.33%. The rapid RT-RPA-NALF is simple and rapid, increases high sensitivity, and can be used in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312133PMC
http://dx.doi.org/10.3390/biology11071018DOI Listing

Publication Analysis

Top Keywords

nucleic acid
12
rt-rpa-nalf assay
12
reverse transcription-recombinase
8
transcription-recombinase polymerase
8
polymerase amplification
8
amplification couple
8
couple nucleic
8
acid lateral
8
lateral flow
8
porcine epidemic
8

Similar Publications

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

Rare constituents of the nasal microbiome contribute to the acute exacerbation of chronic rhinosinusitis.

Inflamm Res

January 2025

Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.

Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.

View Article and Find Full Text PDF

As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA).

View Article and Find Full Text PDF

In this article, we present an approach to maximizing the splicing regulatory properties of splice-switching oligonucleotide (SSO) designed to regulate alternative splicing of PKM pre-mRNA. The studied SSO interacts with the regulatory element in exon 10 of PKM pre-mRNA and contributes to a significant reduction of PKM2 level with a simultaneous increase of the PKM1 isoform. This SSO forms a duplex not only with the regulatory fragment of exon 10 but also with a similar RNA fragment of intron 9.

View Article and Find Full Text PDF

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!