Background: Previous studies have demonstrated that statins can relieve inflammatory brain injury after intracerebral hemorrhage (ICH), but the mechanisms remain poorly characterized. This study aims to test whether simvastatin exerts an anti-inflammatory effect by regulating the proresolving mediators.

Methods: First, male Sprague-Dawley rats had an injection of 200 μL autologous blood. Then, rats were randomly divided into groups treated with simvastatin (i.p. 2 mg/kg) or vehicle. Next, all rats underwent pro-resolving mediator lipoxin A4 (LXA4) level detection, flow cytometric, immunofluorescence, brain edema measurement, neurological scoring and western blot analysis.

Results: We found that simvastatin significantly increased the plasma level of LXA4, an endogenous formyl-peptide receptor 2 (FPR2) agonist, in the early stage of ICH. Consistent with the effect of simvastatin, exogenous LXA4 administration also promoted apoptosis of the circulating neutrophils, reduced neutrophils brain infiltration, and ameliorated inflammatory brain injury after ICH. In addition, similar to simvastatin, exogenous LXA4 markedly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) and the apoptosis-related proteins myeloid cell leukemia 1(Mcl-1)/Bax ratio (a decreased ratio represents the induction of apoptosis) in circulating neutrophils isolated from ICH rats. Notably, all of the aforementioned effects of simvastatin on ICH were significantly abolished by Boc-2, a selective antagonist of FPR2. Moreover, simvastatin led to a similar Mcl-1/Bax ratio reduction as SB203580 (a p38 MAPK inhibitor), but it was abolished by P79350 (a p38 MAPK agonist).

Conclusion: Collectively, these results suggest that simvastatin ameliorates ICH-mediated inflammatory brain injury, possibly by upregulating the level of pro-resolving mediator LXA4 and further stimulating the FPR2/p38 MAPK signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982195PMC
http://dx.doi.org/10.2174/1567202619666220913124627DOI Listing

Publication Analysis

Top Keywords

inflammatory brain
12
brain injury
12
simvastatin
9
intracerebral hemorrhage
8
pro-resolving mediator
8
simvastatin exogenous
8
exogenous lxa4
8
apoptosis circulating
8
circulating neutrophils
8
p38 mapk
8

Similar Publications

SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.

View Article and Find Full Text PDF

Mechanisms of cognitive impairment associated with cerebral infarction.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Cerebral infarction is a common type of stroke with high incidence and disability rates, and most patients experience varying degrees of cognitive impairment. The manifestations and severity of post-infarction cognitive impairment are influenced by multiple interacting factors, and its pathophysiological mechanisms are highly complex, involving pericyte degeneration, excessive generation of reactive oxygen species (ROS), overproduction of glutamate, and overactivation of autophagy. After cerebral infarction, abnormal pericyte function activates neuroinflammation and facilitates the entry of inflammatory mediators into the brain; detachment of pericytes from blood vessels disrupts the integrity of the blood-brain barrier.

View Article and Find Full Text PDF

Ischemic stroke, a neurological condition with a complicated etiology that is accompanied by severe inflammation and oxidative stress, and ethanol (EtOH) may aggravate ischemia/reperfusion (I/R)-induced brain damage. However, the effect of prolonged alcohol intake on acute brain injury remains ambiguous. As part of the mitogen-activated protein kinase (MAPK) family, p38γ is involved in ferroptosis and inflammation in various diseases.

View Article and Find Full Text PDF

1-Octen-3-ol exacerbates depression-induced neurotoxicity via the TLR4/NF-κB and Nrf2/HO-1 pathways.

Neurotoxicology

March 2025

Collaborative Innovation Center for Modern Grain Circulation and Safety, and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, Nanjing 210023, China. Electronic address:

1-Octen-3-ol is a volatile compound widely found in various fungi and plants, and studies have suggested its potential role in the development of neurodegenerative diseases. However, the mechanism by which 1-octen-3-ol induces neural injury in rats remains unclear. In this study, we used aerosolized 1-octen-3-ol to treat depressive model rats to investigate its effects on neural injury behaviors and neurophysiology in SD rats.

View Article and Find Full Text PDF

Chronic pain is a significant public health concern that diminishes patients' quality of life and imposes considerable socioeconomic costs. Effective pharmacological treatments for ongoing pain are limited. Recent studies have indicated that various models of chronic pain-such as neuropathic pain, inflammatory pain, and pain associated with cancer-have abnormal levels of long noncoding RNAs (lncRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!