A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning for prediction of bronchopulmonary dysplasia-free survival among very preterm infants. | LitMetric

Background: Bronchopulmonary dysplasia (BPD) is one of the most common and serious sequelae of prematurity. Prompt diagnosis using prediction tools is crucial for early intervention and prevention of further adverse effects. This study aims to develop a BPD-free survival prediction tool based on the concept of the developmental origin of BPD with machine learning.

Methods: Datasets comprising perinatal factors and early postnatal respiratory support were used for initial model development, followed by combining the two models into a final ensemble model using logistic regression. Simulation of clinical scenarios was performed.

Results: Data from 689 infants were included in the study. We randomly selected data from 80% of infants for model development and used the remaining 20% for validation. The performance of the final model was assessed by receiver operating characteristics which showed 0.921 (95% CI: 0.899-0.943) and 0.899 (95% CI: 0.848-0.949) for the training and the validation datasets, respectively. Simulation data suggests that extubating to CPAP is superior to NIPPV in BPD-free survival. Additionally, successful extubation may be defined as no reintubation for 9 days following initial extubation.

Conclusions: Machine learning-based BPD prediction based on perinatal features and respiratory data may have clinical applicability to promote early targeted intervention in high-risk infants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469562PMC
http://dx.doi.org/10.1186/s12887-022-03602-wDOI Listing

Publication Analysis

Top Keywords

bpd-free survival
8
model development
8
machine learning
4
prediction
4
learning prediction
4
prediction bronchopulmonary
4
bronchopulmonary dysplasia-free
4
dysplasia-free survival
4
survival preterm
4
infants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!