Selective attention filters irrelevant information entering our brain to allow for fine-tuning of the relevant information processing. In the visual domain, shifts of attention are most often followed by a saccadic eye movement to objects and places of high relevance. Recent studies have shown that the stimulus color can affect saccade target selection and saccade trajectories. While those saccade modulations are based on perceptual color space, the level in the visual processing hierarchy at which color selection biases saccade programming remains unclear. As color has also been shown to influence manual response inhibition which is a key function of the prefrontal cortex, we hypothesized that the effects of color on executive functions would also inherently affect saccade programming. To test this hypothesis, we measured behavioral performance and saccade metrics during a modified saccadic Stroop task which reflects competition between color words ("RED" and "GREEN") and their color at the level of the prefrontal cortex. Our results revealed that the oculomotor system can differentially process red and green colors when planning a saccade in the presence of a competing distractor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-022-06459-8 | DOI Listing |
The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK. Electronic address:
Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada.
Cortical neurons in brain slices display intrinsic spike frequency adaptation (I-SFA) to constant current inputs, while extracellular recordings show extrinsic SFA (E-SFA) during sustained visual stimulation. Inferring how I-SFA contributes to E-SFA during behavior is challenging due to the isolated nature of slice recordings. To address this, we recorded macaque lateral prefrontal cortex (LPFC) neurons in vivo during a visually guided saccade task and in vitro in brain slices.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China.
This study investigated the relationship between eye movement parameters and cognitive function in patients with mild to moderate Alzheimer's disease (AD). A total of 80 patients with AD (mild and moderate) and 34 normal controls (NC) participated. Neuropsychological assessments were conducted using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA), while eye movements were recorded using eye-tracking technology.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Melbourne Data Analytics Platform, The University of Melbourne, Parkville 3010, Australia.
Analysing reaction time distributions can provide insights into decision-making processes in the brain. The Linear Approach to Threshold with Ergodic Rate (LATER) model is arguably the simplest model for predicting reaction time distributions and can summarise distributions with as few as two free parameters. However, the coordinates for visualising and fitting distributions using LATER ("reciprobit" space) are irregular, making the application of this simple model inaccessible to those without a programming background.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!