To investigate the effect of contoured insoles constructed of different insole materials, including Nora Lunalastik EVA, Nora Lunalight A fresh, Pe-Lite, and PORON Medical 4708 with Langer Biomechanics longitudinal PPT arch pads on offloading plantar pressure on the foot of the elderly with Type 1 or 2 diabetes during gait. Twenty-two elderly with Type 1 or 2 diabetes participated in the study. Their plantar pressure was measured by using an insole measurement system, while the participants walked 10 m in their bare feet or used each experimental insole in random order. The plantar surface was divided into four specific regions including the toes, forefoot, midfoot, and rearfoot. The mean peak pressure (MPP) and pressure-time integral (PTI) of ten steps with or without wearing one of the four insoles were analyzed on the dominant foot and the four specific plantar regions. After completion of the activities, the participants scored each insole from 1 (the least comfortable) to 10 (the most comfortable). The analysis of variance (ANOVA) factor of the insoles had significant effects on the MPP (P < 0.001) and PTI (P = 0.004) in the dominant foot during gait. Pairwise comparison results showed that the MPP and PTI in the dominant foot were significantly lower (P < 0.001) with PORON Medical 4708 than barefoot, Nora Lunalight A fresh, and Pe-Lite. Additionally, the insole materials had a significant effect for the forefoot (P < 0.001) and rearfoot (P < 0.001) in terms of the MPP and PTI compared with the barefoot condition during gait. Regardless of the plantar region, the MPP and PTI values were the lowest when PORON Medical 4708 was used as the insole material among four insole materials. Meanwhile, a significantly lower MPP and PTI can be found in the forefoot and rearfoot with the use of the four experimental insoles when compared with barefoot. The soft insole materials (i.e., PORON medical 4708 and Nora Lunalastik EVA) had a better performance than the rigid insole materials (i.e., Nora Lunalight A fresh, and Pe-Lite) on plantar pressure offloading for diabetic elderly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470545PMC
http://dx.doi.org/10.1038/s41598-022-19814-0DOI Listing

Publication Analysis

Top Keywords

insole materials
20
plantar pressure
16
poron medical
16
medical 4708
16
mpp pti
16
nora lunalight
12
lunalight fresh
12
fresh pe-lite
12
dominant foot
12
insole
9

Similar Publications

Patients with diabetes polyneuropathy are at a heightened risk for developing foot ulcers, often due to dynamic plantar foot pressure patterns that lead to increased pressure and shear forces in specific foot areas. This study aimed to evaluate the effects of foot insoles on peak pressure and the pressure-time integral in patients with polyneuropathy diabetic foot ulcers over a twelve-week period followed by an eight-week follow up. : This was a prospective, randomized, double-blinded, controlled clinical trial involving 60 patients aged between 50 and 65 years of both genders.

View Article and Find Full Text PDF

Effect of Hard- and Soft-Density Insoles on the Postural Control of Adults over 65 Years of Age: A Cross over Clinical Trial.

Bioengineering (Basel)

December 2024

Department Enfermería, Facultad de Enfermería Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain.

Background: there is a high risk of falls in older adults. One of the factors contributing to fall episodes is advancing age due to deterioration of the proprioceptive system. Certain clinical procedures improve balance and posture, such as the use of insoles.

View Article and Find Full Text PDF

Soft capacitive sensors are widely utilized in wearable devices, flexible electronics, and soft robotics due to their high sensitivity. However, they may suffer delamination and/or debonding due to their low interfacial toughness. In addition, they usually exhibit a small measurement range resulting from their limited stiffness variation range.

View Article and Find Full Text PDF

Shoes or insoles embedded with carbon fiber materials to increase longitudinal stiffness have been shown to enhance running and walking performance in elite runners, and younger adults, respectively. It is unclear, however, if such stiffness modifications can translate to enhanced mobility in older adults who typically walk with greater metabolic cost of transport compared to younger adults. Here, we sought to test whether adding footwear stiffness via carbon fiber insoles could improve walking outcomes (eg, distance traveled and metabolic cost of transport) in older adults during the 6-minute walk test.

View Article and Find Full Text PDF

Validation of Devices for the Five Times Sit To Stand Test: Comparing Plantar Pressure and Head Motion Analysis with Manual Measurement.

Yonsei Med J

January 2025

Department of Rehabilitation Medicine, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.

Purpose: This study aims to evaluate a new method for the five times sit to stand test (FTSST), crucial for addressing frailty in an aging population. It utilizes a smart insole for plantar pressure analysis and a marker-less motion capture device for head height analysis.

Materials And Methods: Thirty-five participants aged 50 years or older underwent FTSST assessment using three methods: manual measurement with a stopwatch (FTSST-M), plantar pressure analysis with smart insoles (FTSST-P), and head height analysis with a marker-less motion capture device (FTSST-H).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!