A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Numerical investigation of effects of tongue articulation and velopharyngeal closure on the production of sibilant [s]. | LitMetric

Numerical investigation of effects of tongue articulation and velopharyngeal closure on the production of sibilant [s].

Sci Rep

Computational Fluid Dynamics Laboratory, Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan.

Published: September 2022

A numerical simulation of sibilant /s/ production with the realistically moving vocal tract was conducted to investigate the flow and acoustic characteristics during the articulation process of velopharyngeal closure and tongue movement. The articulation process was simulated from the end of /u/ to the middle of /s/ in the Japanese word /usui/, including the tongue elevation and the velopharyngeal valve closure. The time-dependent vocal tract geometry was reconstructed from the computed tomography scan. The moving immersed boundary method with the hierarchical structure grid was adopted to approach the complex geometry of the human speech organs. The acoustic characteristics during the co-articulation process were observed and consistent with the acoustic measurement for the subject of the scan. The further simulations with the different closing speeds of the velopharyngeal closure showed that the far-field sound during the co-articulation process was amplified with the slower closing case, and the velum closure speed was inverse proportional to the sound amplitude with the slope value of - 35.3 dB s/m. This indicates possible phonation of indistinguishable aeroacoustics sound between /u/ and /s/ with slower velopharyngeal closure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470661PMC
http://dx.doi.org/10.1038/s41598-022-18784-7DOI Listing

Publication Analysis

Top Keywords

velopharyngeal closure
16
vocal tract
8
acoustic characteristics
8
articulation process
8
co-articulation process
8
closure
6
velopharyngeal
5
numerical investigation
4
investigation effects
4
effects tongue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!