Despite the availability of secure electronic data transfers, most medical information is still stored on paper, and it is usually shared by mail, fax or the patients themselves. Today's technologies aim to the challenge of sharing healthcare information, since exchanging inaccurate data leads to inefficiency and errors. Currently, there exist numerous techniques for exchanging data, which however require continuous internet connection, thus lacking generic applicability in healthcare, in the cases where no internet connection is available. In this paper, a new Device-to-Device (D2D) protocol is proposed, specifying a series of Bluetooth messages regarding the healthcare information that is being exchanged in short-range distances, between a healthcare-practitioner and a citizen. This information refers to structured and unstructured data, which can be directly exchanged through a globally used communication protocol, extending it for the permission of exchanging HL7 FHIR Bluetooth structured messages. Moreover, for high volume data, the D2D protocol can support lossless compression and decompression, improving its overall efficiency. The protocol is firstly evaluated through exchanging sample data in a real-world scenario, whereas an overall comparison of exchanging multiple sized data either using lossless compression or not is being provided. According to the evaluation results, the D2D protocol specification was strictly followed, successfully providing the ability to exchange healthcare-related data, with Bluetooth being considered the most suitable technology for current needs. For small-sized data, the D2D protocol performs better without the provided lossless compression mechanism, whereas in the case of large-sized data lossless compression is considered as the only option.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2022.104199DOI Listing

Publication Analysis

Top Keywords

d2d protocol
16
lossless compression
16
data
10
internet connection
8
data d2d
8
data lossless
8
protocol
7
lossless
5
exchanging
5
health exchange
4

Similar Publications

TRIM28 regulates the coagulation cascade inhibited by p72 of African swine fever virus.

Vet Res

November 2024

Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, Jiangsu Province, China.

In 2018, African swine fever virus (ASFV) emerged in China, causing extremely serious economic losses to the domestic pig industry. Infection with ASFV can cause disseminated coagulation, leading to the consumption of platelets and coagulation factors and severe bleeding. However, the mechanism of virus-induced coagulation has yet to be established.

View Article and Find Full Text PDF

Ad-hoc wireless sensor networks face challenges of optimized node deployment for maximizing coverage and efficiently routing data to control centers in post disaster events. These challenges impact the outcome for extending the lifetime of wireless sensor networks. This study presents a uav assisted reactive zone based EHGR (energy efficient hierarchical gateway routing protocol) that is deployed in a situation where the natural calamity has caused communication and infrastructure damage to a major portion of the sensor network.

View Article and Find Full Text PDF

Remote Patient Monitoring (RPM) using Electronic Healthcare (E-health) is a growing phenomenon enabling doctors predict patient health such as possible cardiac arrests from identified abnormal arrythmia. Remote Patient Monitoring enables healthcare staff to notify patients with preventive measures to avoid a medical emergency reducing patient stress. However weak authentication security protocols in IoT wearables such as pacemakers, enable cyberattacks to transmit corrupt data, preventing patients from receiving medical care.

View Article and Find Full Text PDF

"Industry 5.0" is the latest industrial revolution. A variety of cutting-edge technologies, including artificial intelligence, the Internet of Things (IoT), and others, come together to form it.

View Article and Find Full Text PDF

The latest version of ZigBee offers improvements in various aspects, including its low power consumption, flexibility, and cost-effective deployment. However, the challenges persist, as the upgraded protocol continues to suffer from a wide range of security weaknesses. Constrained wireless sensor network devices cannot use standard security protocols such as asymmetric cryptography mechanisms, which are resource-intensive and unsuitable for wireless sensor networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!