Temporal patterns selection for All-Cause Mortality prediction in T2D with ANNs.

J Biomed Inform

Software and Information Systems Engineering, Ben Gurion University, Beer-Sheva, Israel; Population Health and Science, Ichan Medical School at Mount Sinai, NYC, USA. Electronic address:

Published: October 2022

Mortality prevention in T2D elderly population having Chronic Kidney Disease (CKD) may be possible thorough risk assessment and predictive modeling. In this study we investigate the ability to predict mortality using heterogeneous Electronic Health Records data. Temporal abstraction is employed to transform the heterogeneous multivariate temporal data into a uniform representation of symbolic time intervals, from which then frequent Time Intervals Related Patterns (TIRPs) are discovered. However, in this study a novel representation of the TIRPs is introduced, which enables to incorporate them in Deep Learning Networks. We describe here the use of iTirps and bTirps, in which the TIRPs are represented by a integer and binary vector representing the time respectively. While bTirp represents whether a TIRP's instance was present, iTirp represents whether multiple instances were present. While the framework showed encouraging results, a major challenge is often the large number of TIRPs, which may cause the models to under-perform. We introduce a novel method for TIRPs' selection method, called TIRP Ranking Criteria (TRC), which is consists on the TIRP's metrics, such as the differences in its recurrences, its frequencies, and the average duration difference between the classes. Additionally, we introduce an advanced version, called TRC Redundant TIRP Removal (TRC-RTR), TIRPs that highly correlate are candidates for removal. Then the selected subset of iTirp/bTirps is fed into a Deep Learning architecture like a Recurrent Neural Network or a Convolutional Neural Network. Furthermore, a predictive committee is utilized in which raw data and iTirp data are both used as input. Our results show that iTirps-based models that use a subset of iTirps based on the TRC-RTR method outperform models that use raw data or models that use full set of discovered iTirps.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2022.104198DOI Listing

Publication Analysis

Top Keywords

time intervals
8
deep learning
8
neural network
8
raw data
8
data
5
tirps
5
temporal patterns
4
patterns selection
4
selection all-cause
4
all-cause mortality
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!