Persistent infection with Human Papillomavirus (HPV) is responsible for almost all cases of cervical cancers, and HPV16 and HPV18 associated with the majority of these. These types differ in the proportion of viral minor nucleotide variants (MNVs) caused by APOBEC3 mutagenesis as well as integration frequencies. Whether these traits extend to other types remains uncertain. This study aimed to investigate and compare genomic variability and chromosomal integration in the two phylogenetically distinct Alpha-7 and Alpha-9 clades of carcinogenic HPV types. The TaME-seq protocol was employed to sequence cervical cell samples positive for HPV31, HPV33 or HPV45 and combine these with data from a previous study on HPV16 and HPV18. APOBEC3 mutation signatures were found in Alpha-9 (HPV16/31/33) but not in Alpha-7 (HPV18/45). HPV45 had significantly more MNVs compared to the other types. Alpha-7 had higher integration frequency compared to Alpha-9. An increase in integration frequency with increased diagnostic severity was found for Alpha-7. The results highlight important differences and broaden our understanding of the molecular mechanisms behind cervical cancer induced by high-risk HPV types from the Alpha-7 and Alpha-9 clades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485212PMC
http://dx.doi.org/10.1016/j.tvr.2022.200247DOI Listing

Publication Analysis

Top Keywords

hpv types
12
integration frequencies
8
high-risk hpv
8
hpv16 hpv18
8
alpha-7 alpha-9
8
alpha-9 clades
8
types alpha-7
8
integration frequency
8
types
6
alpha-7
5

Similar Publications

Dysregulation of FURIN and Other Proprotein Convertase Genes in the Progression from HPV Infection to Cancer.

Int J Mol Sci

January 2025

Departments of Microbiology and Immunology, College of Medicine, Penn State University, Hershey, PA 17033, USA.

Productive infections of oncogenic human papillomaviruses (HPVs) are closely linked to the differentiation of host epithelial cells, a process that the virus manipulates to create conditions favorable to produce virion progeny. This viral interference involves altering the expression of numerous host genes. Among these, proprotein convertases (PCs) have emerged as potential oncogenes due to their central role in cellular functions.

View Article and Find Full Text PDF

Background: To extend the practicality of liquid biopsy beyond the historical HPV circulating tumor DNA (ctDNA) assays, we evaluated the clinical relevance of a novel next-generation sequencing HPV ctDNA assay in patients with locally advanced and metastatic squamous cell cancer of the anal canal (mSCCA).

Methods: ctDNA isolated from the plasma of patients with mSCCA was sequenced using a 1.4 Mb hybrid-capture target-enrichment panel covering the whole genome sequences of all 193 HPV types.

View Article and Find Full Text PDF

Background/objectives: Human papillomavirus (HPV) is the primary cause of high-grade cervical lesions and cervical cancer worldwide. In Norway, HPV vaccination was introduced in 2009 for seventh-grade girls and extended through a catch-up program from 2016 to 2019 for women born between 1991 and 1996. This study evaluates the impact of the catch-up vaccination program on the incidence of HPV and high-grade cervical lesions in Troms and Finnmark.

View Article and Find Full Text PDF

Cervical intraepithelial neoplasia (CIN) is a premalignant cervical condition closely linked to persistent high-risk HPV infection, a major risk factor for cervical cancer. This study aims to investigate the relationship between cervicovaginal infections, HPV infection, and CIN development in 94 Romanian women with cervical lesions. Comprehensive assessments included HPV genotyping, cytology, colposcopy, and histopathology.

View Article and Find Full Text PDF

MTIOT: Identifying HPV subtypes from multiple infection data.

Comput Struct Biotechnol J

December 2024

Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.

Persistent infection with high-risk human papillomavirus (hrHPV) is a major cause of cervical cancer. The effectiveness of current HPV-DNA testing, which is crucial for early detection, is limited in several aspects, including low sensitivity, accuracy issues, and the inability to perform comprehensive hrHPV typing. To address these limitations, we introduce MTIOT (Multiple subTypes In One Time), a novel detection method that utilizes machine learning with a new multichannel integration scheme to enhance HPV-DNA analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!