Lipid droplets (LDs) are generally considered to be synthesized in the ER and utilized in the cytoplasm. However, LDs have been observed inside nuclei in some cells, although recent research on nuclear LDs has focused on cultured cell lines. To better understand nuclear LDs that occur in vivo, here we examined LDs in primary hepatocytes from mice following depletion of the nuclear envelope protein lamina-associated polypeptide 1 (LAP1). Microscopic image analysis showed that LAP1-depleted hepatocytes contain frequent nuclear LDs, which differ from cytoplasmic LDs in their associated proteins. We found type 1 nucleoplasmic reticula, which are invaginations of the inner nuclear membrane, are often associated with nuclear LDs in these hepatocytes. Furthermore, in vivo depletion of the nuclear envelope proteins lamin A and C from mouse hepatocytes led to severely abnormal nuclear morphology, but significantly fewer nuclear LDs than were observed upon depletion of LAP1. In addition, we show both high-fat diet feeding and fasting of mice increased cytoplasmic lipids in LAP1-depleted hepatocytes but reduced nuclear LDs, demonstrating a relationship of LD formation with nutritional state. Finally, depletion of microsomal triglyceride transfer protein did not change the frequency of nuclear LDs in LAP1-depleted hepatocytes, suggesting that it is not required for the biogenesis of nuclear LDs in these cells. Together, these data show that LAP1-depleted hepatocytes represent an ideal mammalian system to investigate the biogenesis of nuclear LDs and their partitioning between the nucleus and cytoplasm in response to changes in nutritional state and cellular metabolism in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587410 | PMC |
http://dx.doi.org/10.1016/j.jlr.2022.100277 | DOI Listing |
Autophagy
January 2025
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.
View Article and Find Full Text PDFMolecules
December 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China.
Lipid droplets (LDs), once regarded as inert fat particles, have been ignored by scientific researchers for a long time. Now, studies have shown that LDs are dynamic organelles used to store neutral lipids in cells and maintain cell stability. The abnormality of intracellular LDs usually causes metabolic disorders in the body, such as obesity, atherosclerosis, diabetes, and cancer, so the LDs have attracted wide attention.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
Apigenin (4',5,7-trihydroxyflavone) is a significant natural flavonoid compound that is abundantly found in various fruits and vegetables. It has been demonstrated to alleviate nonalcoholic fatty liver disease and exhibit lipid-lowering effects. However, its impact on lipid droplet (LD) degradation in hepatocytes remains unclear.
View Article and Find Full Text PDFHum Reprod
December 2024
Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland.
Study Question: Can oocyte functionality be assessed by observing changes in their intracytoplasmic lipid droplets (LDs) profiles?
Summary Answer: Lipid profile changes can reliably be detected in human oocytes; lipid changes are linked with maternal age and impaired developmental competence in a mouse model.
What Is Known Already: In all cellular components, lipid damage is the earliest manifestation of oxidative stress (OS), which leads to a cascade of negative consequences for organelles and DNA. Lipid damage is marked by the accumulation of LDs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!