Mycobacteria use a proteasome system that is similar to a eukaryotic proteasome but do not use ubiquitin to target proteins for degradation. Instead, mycobacteria encode a prokaryotic ubiquitin-like protein (Pup) that posttranslationally modifies proteins to mark them for proteolysis. Pupylation occurs on lysines of targeted proteins and is catalyzed by the ligase PafA. Like ubiquitylation, pupylation can be reversed by the depupylase Dop, which shares high structural similarity with PafA. Unique to Dop near its active site is a disordered loop of approximately 40 amino acids that is highly conserved among diverse dop-containing bacterial genera. To understand the function of this domain, we deleted discrete sequences from the Dop loop and assessed pupylation in mutant strains of Mycobacterium tuberculosis. We determined that various Dop loop mutations resulted in altered pupylome profiles, in particular when mutant dop alleles were overexpressed. Taken together, our data suggest these conserved amino acids play a role in substrate selectivity for Dop.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9556782 | PMC |
http://dx.doi.org/10.1016/j.jbc.2022.102478 | DOI Listing |
Human amylin, called also islet amyloid polypeptide (hIAPP), is the principal constituent of amyloid deposits in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Preventing aggregation, and in particular inhibiting the formation and/or stimulating degradation of toxic amylin oligomers formed early in the process, may reduce the negative effects of T2DM.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 99999, China.
A low-molecular-weight compound whose structure strikes a fine balance between hydrophobicity and hydrophilicity may form coacervates via liquid-liquid phase separation in an aqueous solution. These coacervates may encapsulate and convoy proteins across the plasma membrane into the cell. However, releasing the cargo from the vehicle to the cytosol is challenging.
View Article and Find Full Text PDFJ Adv Res
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China. Electronic address:
Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.
Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.
Biomol Biomed
January 2025
Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Medical school of Nantong University, Jiangsu, China.
Sepsis-induced myocardial dysfunction (SIMD) is a severe complication of sepsis, characterized by impaired cardiac function and high mortality rates. Despite significant advances in understanding sepsis pathophysiology, the molecular mechanisms underlying SIMD remain incompletely elucidated. Ubiquitination and deubiquitination, critical post-translational modifications (PTMs) regulating protein stability, localization, and activity, play pivotal roles in cellular processes, such as inflammation, apoptosis, mitochondrial function, and calcium handling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!