We evaluated the removal capacity of a coupled microalgal-bacterial biofilm (CMBB) to eliminate three recalcitrant pharmaceuticals. The CMBB's efficiency, operating at different biofilm concentrations, with or without light, was compared and analyzed to correlate these parameters to pharmaceutical removal and their effect on the microorganism community. Removal rates changed with changing pharmaceutical and biofilm concentrations: higher biofilm concentrations presented higher removal. Removal of 82-94% venlafaxine and 18-51% carbamazepine was obtained with 5 days of CMBB treatment. No iohexol removal was observed. Light, microorganism composition, and dissolved oxygen concentration are essential parameters governing the removal of pharmaceuticals and ammonia. Chlorophyll concentration increased with time, even in the dark. Three bacterial phyla were dominant: Proteobacteria, Bacteroidetes and Firmicutes. The dominant eukaryotic supergroups were Archaeplastida, Excavata and SAR. A study of the microorganisms' community indicated that not only do the species in the biofilm play an important role; environment, concentration and interactions among them are also important. CMBB has the potential to provide low-cost and sustainable treatment for wastewater and recalcitrant pharmaceutical removal. The microenvironments on the biofilm created by the microalgae and bacteria improved treatment efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136399 | DOI Listing |
Chem Biodivers
January 2025
Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, India.
Catheter-associated urinary tract infections (CAUTIs), often caused by biofilm-forming Staphylococcus aureus, present significant clinical challenges. Skt35, a dioxopiperidinamide derivative of cinnamic acid, was investigated for its potential antibacterial and antibiofilm activities against S. aureus biofilms.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Chemistryand Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University Júlio de Mesquita Filho, São José do Rio Preto, SP, Brazil.
Candida is a commensal fungus of clinical interest that commonly lives in oral cavity and intestine but can become an opportunist microrganism and cause severe infections. A serie of 10 aminochalcones were designed and synthetized to obtain compounds anti-Candida with potent and broad-spectrum activity. The most active compound J34 demonstrated excellent in vitro activity against Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata and Candida krusei with minimum inhibitory concentration between 1.
View Article and Find Full Text PDFFront Microbiol
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Dental caries has been one of the most prevalent diseases globally over the last few decades, threatening human oral and general health. The most critical aspect in caries control is to inhibit the dominant cariogenic bacteria (). Sulforaphane (SFN), a compound found in a wide range of cruciferous plants, has demonstrated bacteriostatic activities against various pathogenic bacteria.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Biosciences, Jamia Millia Islamia, New Delhi, India.
Microbial pathogens have developed resistance mechanisms to almost every antibiotic available. There is a need to synthesize or screen new natural compounds to combat the development of drug-resistant pathogens. One of the commonly used methods to evaluate the antimicrobial activity of two or more antibiotics involves a checkerboard assay, which is cumbersome, time-consuming, and expensive.
View Article and Find Full Text PDFBiofilm
December 2024
Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
Bacteria in the oral cavity are responsible for the development of dental diseases such as caries and periodontitis, but it is becoming increasingly clear that the oral microbiome also benefits human health. Many oral care products on the market are antimicrobial, killing a large part of the oral microbiome but without removing the disease-causing biofilm. Instead, non-biocidal matrix-degrading enzymes may be used to selectively remove biofilm without harming the overall microbiome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!