Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oral cancer could be prevented. The primary strategy is based on prevention. Most patients with oral cancer present to the hospital network with advanced staging and a low chance of cure. This condition may be related to physicians' difficulty of making an early diagnosis. With the advancement of information technology, artificial intelligence (AI) holds great promise in terms of assisting in diagnosis. Few machine learning algorithms have been developed for this purpose to date. In this paper, we will discuss the possibilities for diagnosing oral cancer using AI as a tool, as well as the implications for the population. A set of photographic images of oral lesions has been segmented, indicating not only the area of the lesion but also the class of lesion associated with it. Different neural network architectures were trained with the goal of fine segmentation (pixel by pixel), classification of image crops, and classification of whole images based on the presence or absence of a lesion. The accuracy results are acceptable, opening up possibilities not only for identifying lesions but also for classifying the pathology associated with them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.oraloncology.2022.106117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!