Although conventional knockout and transgenic mouse models have significantly advanced our understanding of Receptor Activator of NF-κB Ligand (RANKL) signaling in intra-thymic crosstalk that establishes self-tolerance and later stages of lymphopoiesis, the unique advantages of conditional mouse transgenesis have yet to be explored. A main advantage of conditional transgenesis is the ability to express a transgene in a spatiotemporal restricted manner, enabling the induction (or de-induction) of transgene expression during predetermined stages of embryogenesis or during defined postnatal developmental or physiological states, such as puberty, adulthood, and pregnancy. Here, we describe the K5: RANKL bigenic mouse, in which transgene derived RANKL expression is induced by doxycycline and targeted to cytokeratin 5 positive medullary thymic epithelial cells (mTECs). Short-term doxycycline induction reveals that RANKL transgene expression is significantly induced in the thymic medulla and only in response to doxycycline. Prolonged doxycycline induction in the K5: RANKL bigenic results in a significantly enlarged thymus in which mTECs are hyperproliferative. Flow cytometry showed that there is a marked enrichment of CD4+ and CD8+ single positive thymocytes with a concomitant depletion of CD4+ CD8+ double positives. Furthermore, there is an increase in the number of FOXP3+ T regulatory (Treg) cells and Ulex Europaeus Agglutinin 1+ (UEA1+) mTECs. Transcriptomics revealed that a remarkable array of signals-cytokines, chemokines, growth factors, transcription factors, and morphogens-are governed by RANKL and drive in part the K5: RANKL thymic phenotype. Extended doxycycline administration to 6-weeks results in a K5: RANKL thymus that begins to display distinct histopathological features, such as medullary epithelial hyperplasia, extensive immune cell infiltration, and central tissue necrosis. As there are intense efforts to develop clinical approaches to restore thymic medullary function in the adult to treat immunopathological conditions in which immune cell function is compromised following cancer therapy or toxin exposure, an improved molecular understanding of RANKL's involvement in thymic medulla enlargement will be required. We believe the versatility of the conditional K5: RANKL mouse represents a tractable model system to assist in addressing this requirement as well as many other questions related to RANKL's role in thymic normal physiology and disease processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255830 | PMC |
http://dx.doi.org/10.1016/j.cyto.2022.156022 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China 100853. Electronic address:
This study aimed to investigate the regulation and underlying mechanism of Cathepsin K (CTSK) in bone-invasive pituitary adenomas (BIPAs). A total of 1437 patients with pituitary adenomas were included and followed up. RNA sequencing, immunohistochemistry, and qRT-PCR were used to analyze CTSK expression.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China. Electronic address:
In the present study, we investigated the effects of a representative of the per- and polyfluoroalkyl substance (PFAS) chemical group, namely perfluorooctanoic acid (PFOA), and its alternatives (perfluorobutanoic acid [PFBA] and the hexafluoropropylene oxide dimer acid [GenX]) on bone homeostasis, a process that mainly depends on osteoblast (OB) and osteoclast (OC) activities at the cellular level. C3H10T1/2 cells and bone marrow macrophages (BMMs) were respectively induced into OBs and OCs, and treated with PFOA, PFBA, and GenX at doses of 0.25, 2.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Oral Biology Department, Faculty of Dentistry, Suez Canal University, P.O.Box:41523, Ismailia, Egypt.
This study aims to investigate and compare the effects of short and long-term application of low-level laser therapy on the mandibular alveolar process of osteoporotic rats. Forty adult male albino rats were included in this study. After animal grouping, the experimental group received dexamethasone (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!