Characterization of D3 Autoreceptor Function in Whole Zebrafish Brain with Fast-Scan Cyclic Voltammetry.

ACS Chem Neurosci

Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States.

Published: October 2022

Zebrafish () are ideal model organisms for investigating nervous system function, both in health and disease. Nevertheless, functional characteristics of dopamine (DA) release and uptake regulation are still not well-understood in zebrafish. In this study, we assessed D3 autoreceptor function in the telencephalon of whole zebrafish brains by measuring the electrically stimulated DA release ([DA]) and uptake at carbon fiber microelectrodes with fast-scan cyclic voltammetry. Treatment with pramipexole and 7-OH-DPAT, selective D3 autoreceptor agonists, sharply decreased [DA]. Conversely, SB277011A, a selective D3 antagonist, nearly doubled [DA] and decreased , the first-order rate constant for the DA uptake, to about 20% of its original value. Treatment with desipramine, a selective norepinephrine transporter blocker, failed to increase current, suggesting that our electrochemical signal arises solely from the release of DA. Furthermore, blockage of DA uptake with nomifensine-reversed 7-OH-DPAT induced decreases in [DA]. Collectively, our data show that, as in mammals, D3 autoreceptors regulate DA release, likely by inhibiting uptake. The results of this study are useful in the further development of zebrafish as a model organism for DA-related neurological disorders such as Parkinson's disease, schizophrenia, and drug addiction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105970PMC
http://dx.doi.org/10.1021/acschemneuro.2c00280DOI Listing

Publication Analysis

Top Keywords

autoreceptor function
8
fast-scan cyclic
8
cyclic voltammetry
8
zebrafish
5
uptake
5
characterization autoreceptor
4
function zebrafish
4
zebrafish brain
4
brain fast-scan
4
voltammetry zebrafish
4

Similar Publications

We examined DA activity in the medial prefrontal cortex (mPFC) and nucleus accumbens core (NAcc) in two Different Rat Models of Attention-Deficit/Hyperactivity Disorder: Spontaneously Hypertensive Rats (SHR) Versus Lphn3 Knockout Rats. We examined baseline stimulation-evoked phasic DA release, half-life, and DA autoreceptor (DAR) functioning in the mPFC and NAcc, as well as the response to nomifensine (10 mg/kg, IP), a DA transporter (DAT) blocker, on these measures in the NAcc. Both rat models were hypodopaminergic, with notable regional and mechanistic differences.

View Article and Find Full Text PDF

Mirtazapine is a selective serotonergic antidepressant that functions by blocking adrenergic alpha2-autoreceptors and heteroreceptors and inhibiting 5-HT2 and 5-HT3 receptors. It is a noradrenergic drug. Mirtazapine has anxiolytic or sleep-quality-improving effects, aggravates appetite-stimulation, and has stomach emptying functions.

View Article and Find Full Text PDF

Investigating the Mechanisms Involved in Scopolamine-induced Memory Degradation.

Arch Razi Inst

June 2024

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.

In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.

View Article and Find Full Text PDF

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Action Potential Firing Patterns Regulate Dopamine Release via Voltage-Sensitive Dopamine D2 Autoreceptors in Mouse Striatum In Vivo.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.

Dopamine (DA) in the striatum is vital for motor and cognitive behaviors. Midbrain dopaminergic neurons generate both tonic and phasic action potential (AP) firing patterns in behavior mice. Besides AP numbers, whether and how different AP firing patterns per se modulate DA release remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!