Photothermal induced resonance (PTIR), also known as AFM-IR, enables nanoscale infrared (IR) imaging and spectroscopy by using the tip of an atomic force microscope to transduce the local photothermal expansion and contraction of a sample. The signal transduction efficiency and spatial resolution of PTIR depend on a multitude of sample, cantilever, and illumination source parameters in ways that are not yet well understood. Here, we elucidate and separate the effects of laser pulse length, pulse shape, sample thermalization time (τ), interfacial thermal conductance, and cantilever detection frequency by devising analytical and numerical models that link a sample's photothermal excitations to the cantilever dynamics over a broad bandwidth (10 MHz). The models indicate that shorter laser pulses excite probe oscillations over broader bandwidths and should be preferred for measuring samples with shorter thermalization times. Furthermore, we show that the spatial resolution critically depends on the interfacial thermal conductance between dissimilar materials and improves monotonically, but not linearly, with increasing cantilever detection frequencies. The resolution can be enhanced for samples that do not fully thermalize between pulses (i.e., laser repetition rates ≳ 1/3τ) as the probed depth becomes smaller than the film thickness. We believe that the insights presented here will accelerate the adoption and impact of PTIR analyses across a wide range of applications by informing experimental designs and measurement strategies as well as by guiding future technical advances.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c02612DOI Listing

Publication Analysis

Top Keywords

spatial resolution
12
transduction efficiency
8
efficiency spatial
8
nanoscale infrared
8
interfacial thermal
8
thermal conductance
8
cantilever detection
8
understanding cantilever
4
cantilever transduction
4
resolution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!