Ionic Liquid-Reduced Graphene Oxide Membrane with Enhanced Stability for Water Purification.

ACS Appl Mater Interfaces

Department of Chemical Engineering, Institute of Chemical Technology (ICT), Nathalal Parekh Marg, Matunga, Mumbai 400019, India.

Published: September 2022

There has been a growing interest in water purification by graphene oxide (GO) laminate membranes due to their exceptional hydrophilicity, high throughput, and extraordinary separation performance originating from their two-dimensional and well-defined nanostructure. However, the swelling and stability in an aqueous environment are areas of concern for the GO laminate membranes. Here, a novel methylimidazolium ionic liquid-reduced GO (mimG)-assembled GO laminate membrane (mimG-GO) with remarkable stability was fabricated by a vacuum-assisted strategy for water purification. Methylimidazolium-based ionic liquid-reduced graphene oxide (mimG) was prepared by a facile nucleophilic ring-opening mechanism. Fabricated membranes were thoroughly characterized for stability, structural, permeance, and rejection properties in an aqueous environment. A combination of cationic mimG and GO nanosheets improves membrane stability in the aqueous environment via cation-π interactions and creates nanofluidic channels for facile water transport while yielding significant enhancement in the salt and dye separation performance. The pore size and the number of nanofluidic channels were precisely controlled via material deposition and laminate thickness to remove salts from water. The mimG-GO laminate membrane containing 72.2 mg m deposition showed a permeance of 14.9 LMH bar, 50% higher than 9.7 LMH bar of the neat GO laminate membrane, in addition to an increase in NaSO salt rejection from 46.6 to 77.4%, overcoming the flux-rejection trade-off. The mimG-GO laminate membrane also rejected various anionic dyes (i.e., 99.9% for direct red 80 (DR 80), 96.8% for reactive black 5 (RB 5), and 91.4% for methyl orange (MO)). The mimG-GO laminate membrane containing 361.0 mg m deposition showed the highest rejection for NaSO (92.1%) and 99.9% rejection for DR 80, 99.0% rejection for RB 5, and 98.1% rejection for MO dyes keeping a flux of 2.6 LMH bar. Partial reduction and covalent grafting of ionic liquid moieties on GO helped to enhance the cation-π interaction between GO laminates, which showed enhanced stability, frictionless water transport, with high salt and dye rejection. Moreover, a simultaneous improvement in water permeance and solute rejection reveals the great potential of ionic liquid-functionalized GO laminate membranes for water-based applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c12488DOI Listing

Publication Analysis

Top Keywords

laminate membrane
20
ionic liquid-reduced
12
graphene oxide
12
water purification
12
laminate membranes
12
aqueous environment
12
mimg-go laminate
12
lmh bar
12
laminate
9
liquid-reduced graphene
8

Similar Publications

Hydatid disease is endemic in Tunisia. Whereas uncomplicated pulmonary hydatid cysts are easily diagnosed on radiological findings, complicated and atypical forms may be misdiagnosed and confused with other pulmonary lesions, mainly lung malignancies. We report a case of a 47-year-old woman, who presented with a 3-month history of hemoptysis.

View Article and Find Full Text PDF

A total of 384 animals (sheep, goat, cattle, and buffalo) were examined for the presence of hydatid cysts only in the lungs. The lung tissue samples associated with the hydatid cyst were collected immediately after slaughter, followed by fixation in 10% formalin. The fixed tissue was subjected to paraffin embedding technique.

View Article and Find Full Text PDF

The present study aimed to evaluate the histologic, histochemical, and immunohistochemical changes in buffalo livers with cystic echinococcosis. Noninfected and infected livers were collected from the freshly slaughtered buffalo at the Aligarh abattoir. Small pieces of both infected and noninfected livers ( = 5) were cut and processed for histologic and histochemical studies.

View Article and Find Full Text PDF

Malignant proliferating trichilemmal tumors (MPTTs), arising from the external root sheath of hair follicles, are exceptionally rare, with limited documentation of their genetic alterations. We present a case of a 64-year-old African American woman who initially presented with a gradually enlarging nodule on her posterior scalp. An initial biopsy at an outside hospital suggested metastatic adenocarcinoma or squamous cell carcinoma (SCC) of an uncertain origin.

View Article and Find Full Text PDF

High-performance H/CO separation from 4-nm-thick oriented Zn(benzimidazole) films.

Sci Adv

December 2024

Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland.

High-performance membrane-based H/CO separation offers a promising way to reduce the energy costs of precombustion capture. Current membranes, often made from two-dimensional laminates like metal-organic frameworks, have limitations due to complex fabrication methods requiring high temperatures, organic solvents, and long synthesis time. These processes often result in poor H/CO selectivity under pressurized conditions due to defective transport pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!