Donor-acceptor molecular complexes are a popular class of materials utilizing charge-transfer states for practical applications. A recent class of donor-acceptor dyads based on the fluorescent BODIPY functionalized with triphenylamine (TPA) shows the peculiar property of dual fluorescence. It is hypothesized that instead of the sensitized charge-transfer state being optically dark, it provides an additional bright radiative pathway. Here we use time-dependent density functional theory to characterize the energetic alignment of excitonic and charge-transfer states in a BODIPY-TPA molecular complex. We observe that using a long-range exchange corrected functional in combination with state-specific solvation scheme gives a qualitatively correct alignment of the exciton and charge-transfer states and an enhancement in oscillator strength for the equilibrium solvated charge-transfer state, in agreement with experiment. This work provides rationalization of charge-transfer state emission and provides a foundation to explore charge-transfer using excited-state nonadiabatic dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c02479 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.
Understanding charge transport in semiconductor quantum dot (QD) assemblies is important for developing the next generation of solar cells and light-harvesting devices based on QD technology. One of the key factors that governs the transport in such systems is related to the hybridization between the QDs. Recent experiments have successfully synthesized QD molecules, arrays, and assemblies by directly fusing the QDs, with enhanced hybridization leading to high carrier mobilities and coherent band-like electronic transport.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India.
We report nonconjugated monocyclic dienes (nCMDs) as unique photoswitchable molecules that hold promise for harvesting substantial solar energy and storing it for extended durations. Herein, cyclohepta-1,4-diene and its N-heterocyclic analogue have been considered as prototypical models for investigating photoswitching behavior in nCMDs. Initially, the nonradiative deactivation pathway of nCMD from the low-lying excited state to the [2 + 2]-cycloadduct has been evaluated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea.
The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.
View Article and Find Full Text PDFNanoscale
January 2025
Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.
Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
The organic semiconductor Y6 has been extensively used as an acceptor in organic photovoltaic devices, yielding high efficiencies. Its unique properties include a high refractive index, intrinsic exciton dissociation, and barrierless charge generation in bulk heterojunctions. However, the direct impact of the crystal packing morphology on the photophysics of Y6 has remained elusive, hindering further development of heterojunction and homojunction devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!