The intensive use of pesticides and their subsequent distribution to the environment and non-target organisms is of increasing concern. So far, little is known about the occurrence of pesticides in soils of untreated areas─such as ecological refuges─as well as the processes contributing to this unwanted pesticide contamination. In this study, we analyzed the presence and abundance of 46 different pesticides in soils from extensively managed grassland sites, as well as organically and conventionally managed vegetable fields (60 fields in total). Pesticides were found in all soils, including the extensive grassland sites, demonstrating a widespread background contamination of soils with pesticides. The results suggest that after conversion from conventional to organic farming, the organic fields reach pesticide levels as low as those of grassland sites not until 20 years later. Furthermore, the different pesticide composition patterns in grassland sites and organically managed fields facilitated differentiation between long-term persistence of residues and diffuse contamination processes, that is, short-scale redistribution (spray drift) and long-scale dispersion (atmospheric deposition), to offsite contamination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535809PMC
http://dx.doi.org/10.1021/acs.est.2c02413DOI Listing

Publication Analysis

Top Keywords

grassland sites
20
pesticides soils
16
extensive grassland
8
vegetable fields
8
pesticides
6
soils
5
grassland
5
sites
5
fields
5
concerted evaluation
4

Similar Publications

The forest musk deer () and Siberian roe deer () are browsers with a broad sympatric distribution in North and Southwest China. However, little is known about their spatial utilization of microhabitats and habitats. This study, conducted on Huanglong Mountain in China, analyzed the defecation site distribution, indicating preferences of forest musk deer and Siberian roe deer for their habitat demands.

View Article and Find Full Text PDF

Superellipse Equation Describing the Geometries of Tree Rings.

Plants (Basel)

December 2024

Co-Innovation Center of Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.

Our previous study using 41 tree rings of one Mill. disc indicated that the superellipse equation can accurately fit its tree-ring shape. This study further used the superellipse equation (xan+yβn=1 ) to model the geometries of 1090 tree rings of discs collected from five sites in Denmark.

View Article and Find Full Text PDF

Conservation of bumblebee populations is essential because of their role as pollinators. Declines in bumblebee abundance have been documented in recent decades, mostly attributed to agricultural intensification, landscape simplification and loss of semi-natural grasslands. In this study, we investigated the effects of landscape composition on bumblebee abundance at different spatial scales in 476 semi-natural grassland sites in southern Sweden.

View Article and Find Full Text PDF

(1) Background: Cashmere goats, as one of the characteristic species, are rich in genetic resources. Protecting and rationally utilizing these genetic resources is of great significance for the genetic improvement of cashmere goats. (2) Methods: In this study, tissue samples were collected from , which included the Arbas type (); Erlangshan type (); Alashan type (), (), and ().

View Article and Find Full Text PDF

Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!