Probiotics produce small molecules that may serve as alternatives to conventional antibiotics by suppressing growth of antimicrobial resistant (AMR) pathogens. The objective of this study was to identify and examine antimicrobials produced and secreted by probiotics using 'omics' profiling with computer-based metabolic flux analyses. The cell-free supernatant of Gram-positive GG (LGG) and Gram-negative Nissle (ECN) probiotics inhibited growth of AMR Typhimurium, , and ranging between 28.85 - 41.20% (LGG) and 11.48 - 29.45% (ECN). A dose dependent analysis of probiotic supernatants showed LGG was 6.27% to 20.55% more effective at reducing AMR pathogen growth when compared to ECN. Principal component analysis showed clear separation of ECN and LGG cell free supernatant metabolomes. Among 667 metabolites in the supernatant, 304 were differentially abundant between LGG and ECN probiotics. Proteomics identified 87 proteins, whereby 67 (ECN) and 14 (LGG) showed differential expression as enzymes related to carbohydrate and energy metabolic pathways. The whole genomes and metabolomes were next used for metabolic network analysis. The model predicted the production of 166 metabolites by LGG and ECN probiotics across amino acid, carbohydrate/energy, and nucleotide metabolism with antimicrobial functions. The predictive accuracy of the metabolic flux analysis highlights the novel utility for profiling probiotic supplements as dietary-based antimicrobial alternatives in the control of AMR pathogen growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008781 | PMC |
http://dx.doi.org/10.1080/19390211.2022.2120146 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!