Uranium is routinely handled in various stages of nuclear fuel cycle and its association with human serum albumin (HSA) has been reported in literature, however, their binding characteristics still remains obscure. The present study aims to understand interaction of uranium with HSA by employing all atom molecular dynamics simulation of the HSA-metal ion complex. His67, His247 and Asp249 residues constitute the major binding site of HSA, which capture the uranyl ion (UO). A total of six sets of initial coordinates are used for Zn-HSA and UO-HSA system at pH = 4, 7.4 and 9, respectively. Enhance sampling method, namely, well-tempered meta-dynamics (WT-MtD) is employed to study the binding and un-binding processes of UO and Zn ions. Potential of mean force (PMF) profiles are generated for all the six sets of complexes from the converged WT-MtD run. Various basins and barriers are observed along the (un)binding pathways. Hydrogen bond dynamics and short-range Coulomb interactions are evaluated from the equilibrium run at each basins and barriers for both the ions at all pH values. The binding of UO ion with HSA is the result of the dynamical balance between UO-HSA and UO-water short range Coulomb interactions. Zn ion interact more strongly than UO at all pH through short range Coulomb interactions. PMF values further concludes that UO cannot associate to the Zn bound HSA protein but can be captured by free HSA at all pH values i.e. endosomal, alkaline and physiological pH.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2120080DOI Listing

Publication Analysis

Top Keywords

coulomb interactions
12
human serum
8
serum albumin
8
uranyl ion
8
atom molecular
8
molecular dynamics
8
basins barriers
8
short range
8
range coulomb
8
hsa
6

Similar Publications

Nanobubbles wield a significant influence over the electronic properties of 2D materials, showing diverse applications ranging from flexible devices to strain sensors. Here, we reveal that a strongly correlated phenomenon, i.e.

View Article and Find Full Text PDF

Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe-WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements.

View Article and Find Full Text PDF

For moiré bilayer TMD superlattices, full-configuration-interaction (FCI) calculations are presented that take into account both the intra-moiré-quantum-dot (MQD) charge-carrier Coulombic interactions, as well as the crystal-field effect from the surrounding moiré pockets (inter-moiré-QD interactions). The effective computational embedding strategy introduced here allows for an FCI methodogy that enables the complete interpretation of the counterintuitive experimental observations reported recently in the context of moiré TMD superlattices at integer fillings ν=2 and 4. Two novel states of matter are reported: (i) a genuinely quantum-mechanical supercrystal of sliding Wigner molecules (WMs) for unstrained moiré TMD materials (when the crystal field is commensurate with the trilobal symmetry of the confining potential in each embedded MQD) and (ii) a supercrystal of pinned Wigner molecules when the crystal field is incommensurate with the trilobal symmetry or straining of the whole material is involved.

View Article and Find Full Text PDF

We consider a half-filled Chern band and its transport properties in two phases that it may form: the electronic Fermi liquid and the composite-fermion Fermi liquid. For weak disorder, we show that the Hall resistivity for the former phase is very small, while for the latter it is close to 2h/e^{2}, independent of the distribution of the Berry curvature in the band. At rising temperature and high frequency, we expect the Hall resistivity of the electronic phase to rise, and that of the composite-fermion phase to deviate from 2h/e^{2}.

View Article and Find Full Text PDF

Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!