A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Earthworm Aporrectodea molleri (oligochaeta)'s coelomic fluid-associated bacteria modify soil biochemical properties and improve maize (Zea mays L.) plant growth under abiotic stress conditions. | LitMetric

Earthworm Aporrectodea molleri (oligochaeta)'s coelomic fluid-associated bacteria modify soil biochemical properties and improve maize (Zea mays L.) plant growth under abiotic stress conditions.

Environ Sci Pollut Res Int

Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco.

Published: January 2023

This study evaluated the impact of Aporrectodea molleri's coelomic fluid-associated bacteria (CFB) on Zea mays L. growth and soil biochemical characteristics under abiotic stress conditions, including alkaline soil (pH = 8) and nitrogen (N), phosphate (P), and potassium (K) deficit. Compared to maize cultivated in uninoculated soil, the effect of CFB on boosting plant growth under abiotic stress was notably exceptional. Different CFB treatments increased significantly root and shoot length by 50% and 21%, respectively. Furthermore, the presence of isolates in soil resulted in a significant increase in plant fresh and dry weights (of up to 113% and 91% for roots, and up to 173% and 44% for shoots), leaf surface (78%), and steam diameter (107%). Overall, soil inoculation with CFB significantly (P < 0.05) enhanced chlorophyll and water content in the plant compared to the untreated soil. Despite the soil's alkaline condition, CFB drastically boosted soil quality by increasing nutrient availability (up to 30 ppm for N, 2 ppm for P, and 60 ppm for K) and enzyme activity (up to 1.14 μg p-NP h g for acide phosphatase, 9 μg p-NP h g for alkaline phosphatase and 40 μg NH-N 2 h g for urease), throughout the early stages of the growth period. Interestingly, alkaline phosphatase concentrations were substantially greater in treatments with different isolates than acid phosphatase. Furthermore, the principal component analysis showed that the inoculation with bacteria strains CFB1 Buttiauxella gaviniae and CFB3 Aeromonas hydrophila had a significantly better stimulatory stimulatory and direct influence on maize growth than the other isolates had a substantial effect on soil's biochemical features. Thus, we assumed that the beneficial contribution of earthworms in the rhizosphere might be attributed in large part to associated microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-22999-6DOI Listing

Publication Analysis

Top Keywords

abiotic stress
12
coelomic fluid-associated
8
fluid-associated bacteria
8
soil biochemical
8
zea mays
8
plant growth
8
growth abiotic
8
stress conditions
8
soil
6
earthworm aporrectodea
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!