Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583955PMC
http://dx.doi.org/10.1007/s13280-022-01791-3DOI Listing

Publication Analysis

Top Keywords

correction crafting
4
crafting success
4
success failure
4
failure decentralized
4
decentralized marine
4
marine management
4
correction
1
success
1
failure
1
decentralized
1

Similar Publications

Contour uncertainty assessment for MD-omitted daily adaptive online head and neck radiotherapy.

Radiother Oncol

January 2025

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Background And Purpose: Daily online adaptive radiotherapy (DART) increases treatment accuracy by crafting daily customized plans that adjust to the patient's daily setup and anatomy. The routine application of DART is limited by its resource-intensive processes. This study proposes a novel DART strategy for head and neck squamous cell carcinoma (HNSCC), automizing the process by propagating physician-edited treatment contours for each fraction.

View Article and Find Full Text PDF

Improving robustness by action correction via multi-step maximum risk estimation.

Neural Netw

December 2024

School of Computer Science and Technology, Soochow University, Suzhou, 215006, China. Electronic address:

Certifying robustness against external uncertainties throughout the control process to reduce the risk of instability is very important. Most existing approaches based on adversarial learning use a fixed parameter to adjust the intensity of adversarial perturbations and design these perturbations in a greedy manner without considering future implications. However, they often lead to severe vulnerabilities when attack budgets vary dynamically or under foresighted attacks.

View Article and Find Full Text PDF

RS-MOCO: A deep learning-based topology-preserving image registration method for cardiac T1 mapping.

Comput Biol Med

January 2025

Paul C.Lauterbur Research Center For Biomedical lmaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong, 518055, China. Electronic address:

Cardiac T1 mapping can evaluate various clinical symptoms of myocardial tissue. However, there is currently a lack of effective, robust, and efficient methods for motion correction in cardiac T1 mapping. In this paper, we propose a deep learning-based and topology-preserving image registration framework for motion correction in cardiac T1 mapping.

View Article and Find Full Text PDF

Importance: Emerging evidence suggests that severe acute respiratory syndrome, COVID-19, negatively impacts brain health, with clinical magnetic resonance imaging (MRI) showing a wide range of neurologic manifestations but no consistent pattern. Compared with 3 Tesla (3T) MRI, 7 Tesla (7T) MRI can detect more subtle injuries, including hippocampal subfield volume differences and additional standard biomarkers such as white matter lesions. 7T MRI could help with the interpretation of the various persistent post-acute and distal onset sequelae of COVID-19 infection.

View Article and Find Full Text PDF

Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the density-based basis-set corrections approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!