Purpose: Pancreatic cancer is characterized by a dense desmoplasia stroma, which hinders efficient drug delivery and plays a critical role in tumor progression and metastasis. MLN4924 is a first-in-class NEDD8-activating enzyme inhibitor that exhibits anti-tumor activities toward pancreatic cancer, and given the comprehensive effects that MLN4924 could have, we ask what impact MLN4924 would have on the stroma of pancreatic cancer and its underlying mechanisms.
Methods: Primary pancreatic stellate cells (PSCs) and human HMEC-1 cells were treated with MLN4924 in vitro. The proliferation and extracellular matrix protein levels of PSCs were tested, and their relationship with transcription factor Gli1 in PSCs was investigated. The angiogenic phenotypes of HMEC-1 cells were evaluated using capillary-like tube formation assay, and their relationship with REDD1 in HMEC-1 cells was investigated.
Results: In this study, we found that MLN4924 inhibited the proliferation of pancreatic stellate cells and their secretion of collagen and CXCL-1, and the collagen secretion inhibiting effect of MLN4924 was related with transcription factor Gli1. MLN4924 inhibited multiple angiogenic phenotypes of HMEC-1 cells, and mTOR agonist partially relieved the inhibition of MLN4924 on HEMCs. MLN4924 increased the expression of REDD1 and REDD1 knockdown promoted the angiogenic phenotypes of HMEC-1 cells.
Conclusions: Our study suggests that MLN4924 inhibits both the tumor stroma and angiogenesis in pancreatic cancer, and the inhibition effect is related with Gli1 in pancreatic stellate cells and REDD1 in vascular endothelial cells, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10620-022-07671-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!