In the recent past, proteolysis-targeting chimera (PROTAC) technology has received enormous attention for its ability to overcome the limitations of protein inhibitors and its capability to target undruggable proteins. The PROTAC molecule consists of three components, a ubiquitin E3 ligase ligand, a linker, and a target protein ligand. The application of this technology is rapidly gaining momentum, especially in cancer therapy. In this review, we first look at the history of degraders, followed by a section on the ubiquitin proteasome system (UPS) and E3 ligases used in PROTAC development. PROTACs are dependent on the UPS for degradation of target proteins. We further discuss the scope and design of degraders and mitigation strategies for overcoming the hook effect seen with degraders. As PROTACs do not follow Lipinski's 'Rule of 5', these molecules face drug metabolism and pharmacokinetic challenges. A detailed section on absorption, distribution, metabolism, and excretion of degraders is provided wherein we discuss methodologies and strategies to surmount the challenges faced by these molecules. For understanding PROTAC-mediated degradation, the characterization and measurement of protein levels in cells is important. Currently used techniques and recent advancements in assessment tools for degraders are discussed. Furthermore, we examine the challenges and emerging technologies that need to be focused on in order to competently develop potent degraders. Many companies are working in this area of emerging new modality and a few PROTACs have already entered clinical trials; the details of the trials are included in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40259-022-00551-9 | DOI Listing |
Hum Exp Toxicol
January 2025
Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China.
Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.
View Article and Find Full Text PDFAm J Cardiovasc Drugs
January 2025
Division of Cardiology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea.
Background: Amiodarone is an effective anti-arrhythmic drug; however, it is frequently associated with thyroid dysfunction. The aim of this study was to investigate the incidence and risk factor of amiodarone-induced dysfunction in an iodine-sufficient area.
Methods: This retrospective cohort study included 27,023 consecutive patients treated with amiodarone for arrhythmia, using the Korean National Health Insurance database.
Neurochem Res
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.
View Article and Find Full Text PDFCurr Atheroscler Rep
January 2025
Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.
Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.
View Article and Find Full Text PDFAmino Acids
January 2025
Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!