A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

COYOTE: Sequence-derived structural descriptors-based computational identification of glycoproteins. | LitMetric

COYOTE: Sequence-derived structural descriptors-based computational identification of glycoproteins.

J Bioinform Comput Biol

Computational Biology and Data Analysis Laboratory, Department of Computer Sciences & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K 13100 Pakistan.

Published: October 2022

Glycoproteins play an important and ubiquitous role in many biological processes such as protein folding, cell-to-cell signaling, invading microorganism infection, tumor metastasis, and leukocyte trafficking. The key mechanism of glycoproteins must be revealed to model and refine glycosylated protein recognition, which will eventually assist in the design and discovery of carbohydrate-derived therapeutics. Experimental procedures involving wet-lab experiments to reveal glycoproteins are very time-consuming, laborious, and highly costly. However, costly and tedious experimental procedures can be assisted by ranking the most probable glycoproteins through computational methods with improved accuracy. In this study, we have proposed a novel machine learning-based predictive model for glycoproteins identification. Our proposed model is based on sequence-derived structural descriptors (SDSD) that fill the gap of unavailability of protein 3D structures and lack of accuracy in sequence information alone. Through a series of simulation studies, we have shown that our proposed model gives state-of-the-art generalization performance verified through various machine learning-centric and biologically relevant techniques and metrics. Through data mining in this study, we have also identified the role of descriptors in determining glycoproteins. Python-based standalone code together with a webserver implementation of our proposed model (COYOTE: identifiCation Of glYcoprOteins Through sEquences) is available at the URL: https://sites.google.com/view/wajidarshad/software.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0219720022500196DOI Listing

Publication Analysis

Top Keywords

proposed model
12
sequence-derived structural
8
glycoproteins
8
identification glycoproteins
8
experimental procedures
8
model
5
coyote sequence-derived
4
structural descriptors-based
4
descriptors-based computational
4
computational identification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!