The contribution of autonomic mechanisms to pain in temporomandibular disorders: A narrative review.

J Oral Rehabil

Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

Published: November 2022

Background: Temporomandibular disorders (TMD) are diagnosed based on symptom presentation and, like other functional pain disorders, often lack definitive pathology. There is a strong association between elevated stress levels and the severity of TMD-related pain, which suggests that alterations in autonomic tone may contribute to this pain condition.

Objectives: This narrative review examines the association between altered autonomic function and pain in TMD.

Methods: Relevant articles were identified by searching PubMed and through the reference list of those studies.

Results: TMD sufferers report an increased incidence of orthostatic hypotension. As in other chronic musculoskeletal pain conditions, TMD is associated with increased sympathetic tone, diminished baroreceptor reflex sensitivity and decreased parasympathetic tone. It remains to be determined whether ongoing pain drives these autonomic changes and/or is exacerbated by them. To examine whether increased sympathetic tone contributes to TMD-related pain through β adrenergic receptor activation, clinical trials with the beta blocker propranolol have been undertaken. Although evidence from small studies suggested propranolol reduced TMD-related pain, a larger clinical trial did not find a significant effect of propranolol treatment. This is consistent with human experimental pain studies that were unable to demonstrate an effect of β adrenergic receptor activation or inhibition on masticatory muscle pain. In preclinical models of temporomandibular joint arthritis, β adrenergic receptor activation appears to contribute to inflammation and nociception, whereas in masticatory muscle, α adrenergic receptor activation has been found to induce mechanical sensitisation. Some agents used to treat TMD, such as botulinum neurotoxin A, antidepressants and α adrenergic receptor agonists, may interact with the autonomic nervous system as part of their analgesic mechanism.

Conclusion: Even if dysautonomia turns out to be a consequence rather than a causative factor of painful TMD, the study of its role has opened up a greater understanding of the pathogenesis of this condition.

Download full-text PDF

Source
http://dx.doi.org/10.1111/joor.13370DOI Listing

Publication Analysis

Top Keywords

adrenergic receptor
20
receptor activation
16
tmd-related pain
12
pain
11
temporomandibular disorders
8
narrative review
8
increased sympathetic
8
sympathetic tone
8
masticatory muscle
8
tmd
5

Similar Publications

Midodrine for Intradialytic Hypotension.

Nephrol Nurs J

January 2025

Professor of Pharmacy Practice, Clinical Pharmacotherapy Specialist, Nephrology & Dialysis, Arnold &Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY.

Intradialytic hypotension (IDH) is a common occurrence in hemodialysis. IDH occurs when there is a drop in blood pressure along with hypotensive symptoms. There are various causes of IDH, and it is important to consider proper management of this condition.

View Article and Find Full Text PDF

Degradation products of magnesium implant synergistically enhance bone regeneration: Unraveling the roles of hydrogen gas and alkaline environment.

Bioact Mater

April 2025

Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Biodegradable magnesium (Mg) implant generally provides temporary fracture fixation and facilitates bone regeneration. However, the exact effects of generated Mg ions (Mg), hydrogen gas (H), and hydroxide ions (OH) by Mg degradation on enhancing fracture healing are not fully understood. Here we investigate the degradation of Mg intramedullary nail (Mg-IMN), revealing the generation of these degradation products around the fracture site during early stages.

View Article and Find Full Text PDF

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Purpose: Resting beat-to-beat blood pressure variability is a strong predictor of cardiovascular events and mortality. However, its underlying mechanisms remain incompletely understood. Given that the sympathetic nervous system plays a pivotal role in cardiovascular regulation, we hypothesized that alpha-1 adrenergic receptors (the main sympathetic receptor controlling peripheral vasoconstriction) may contribute to resting beat-to-beat blood pressure variability.

View Article and Find Full Text PDF

NHERF2 regulatory function in signal transduction pathways and control of gene expression: Implications for cellular homeostasis and breast cancer.

Arch Med Res

January 2025

Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico. Electronic address:

Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!