Suspended particulate matter (SPM) contributes to the loss of reactive nitrogen (Nr) in estuarine ecosystems. Although denitrification and anaerobic ammonium oxidation in SPM compensate for the current imbalance of global nitrogen (N) inputs and sinks, it is largely unclear whether other pathways for Nr transformation exist in SPM. Here, we combined stable isotope measurements with metagenomics and metatranscriptomics to verify the occurrence of dissimilatory nitrate reduction to ammonium (DNRA) in the SPM of the Pearl River Estuary (PRE). Surprisingly, the conventional functional genes of DNRA () were abundant and highly expressed in SPM, which was inconsistent with a low potential rate. Through taxonomic and comparative genomic analyses, we demonstrated that nitrite reductase (NirBD) in conjunction with assimilatory nitrate reductase (NasA) performed assimilatory nitrate reduction (ANR) in SPM, and diverse alpha- and gamma-proteobacterial lineages were identified as key active heterotrophic ANR bacteria. Moreover, ANR was predicted to have a relative higher occurrence than denitrification and DNRA in a survey of Nr transformation pathways in SPM across the PRE spanning 65 km. Collectively, this study characterizes a previously overlooked pathway of Nr transformation mediated by heterotrophic ANR bacteria in SPM and has important implications for our understanding of N cycling in estuaries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.2c04390 | DOI Listing |
Environ Res
December 2024
College of Agriculture, Ningxia University, Yinchuan, 750021, China. Electronic address:
High salinity, low fertility and poor structure in saline-alkali soils led to nutrient cycling slow and microbial activity loss. The application of amendments has proven effective in enhancing soil nutrients, which significantly affects soil nitrogen and phosphorus cycling process. However, the specific impact of different amendments on the microbial functional potential related to nutrient cycling in saline-alkali soils remains unclear.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Agriculture, South China Agricultural University, Guangzhou, China.
Cadmium (Cd) pollution in arable soils and its accumulation in rice plants have become a global concern because of their harmful effects on crop yield and human health. The stabilization method which involves the application of organic amendments such as vermicompost (VC), is frequently utilized for the remediation of Cd-contaminated soils. This study investigated the effects of VC on the soil chemical properties and the physio-biochemical functions of fragrant rice, as well as nitrogen (N) metabolism and assimilatory enzyme activities, 2-acetyl-1-pyrroline (2AP) content in rice grains, and the grain yields of fragrant rice cultivars, i.
View Article and Find Full Text PDFMar Environ Res
December 2024
Observation and Research Station of Bohai Strait Eco-Corridor, First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 266200, Qingdao, China. Electronic address:
Front Microbiol
November 2024
Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China.
J Microbiol
November 2024
Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
Bioflocs are microbial aggregates primarily composed of heterotrophic bacteria that play essential ecological roles in maintaining animal health, gut microbiota, and water quality in biofloc aquaculture systems. Despite the global adoption of biofloc aquaculture for shrimp and fish cultivation, our understanding of biofloc microbiota-particularly the dominant bacterial members and their ecological functions-remains limited. In this study, we employed integrated metataxonomic and metagenomic approaches to demonstrate that the family Rhodobacteraceae of Alphaproteobacteria consistently dominates the biofloc microbiota and plays essential ecological roles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!